Publication:
Interaction prediction of PDZ domains using a machine learning approach

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorKeskin, Özlem
dc.contributor.kuauthorGürsoy, Attila
dc.contributor.kuauthorKalyoncu, Sibel
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileMaster Student
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid26605
dc.contributor.yokid8745
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:11:09Z
dc.date.issued2010
dc.description.abstractProtein interaction domains play crucial roles in many complex cellular pathways. PDZ domains are one of the most common protein interaction domains. Prediction of binding specificity of PDZ domains by a computational manner could eliminate unnecessary, time-consuming experiments. In this study, interactions of PDZ domains are predicted by using a machine learning approach in which only primary sequences of PDZ domains and peptides are used. In order to encode feature vectors for each interaction, trigram frequencies of primary sequences of PDZ domains and corresponding peptides are calculated. After construction of numerical interaction dataset, we compared different classifiers and ended up with Random Forest (RF) algorithm which gave the top performance. We obtained very high prediction accuracy (91.4%) for binary interaction prediction which outperforms all previous similar methods.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipMiddle East Technical University
dc.description.sponsorshipInstitute of Electrical and Electronics Engineers (IEEE)
dc.description.sponsorshipTurkey Section
dc.identifier.doi10.1109/HIBIT.2010.5478896
dc.identifier.isbn9781-4244-5970-4
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-77954492458anddoi=10.1109%2fHIBIT.2010.5478896andpartnerID=40andmd5=a3a083188a2b7892a449450dcace6f65
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-77954492458
dc.identifier.urihttp://dx.doi.org/10.1109/HIBIT.2010.5478896
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9578
dc.keywordsPdz domains
dc.keywordsProtein-protein interactions
dc.keywordsRandom forest
dc.keywordsBinary interactions
dc.keywordsBinding specificities
dc.keywordsCellular pathway
dc.keywordsData sets
dc.keywordsFeature vectors
dc.keywordsInteraction prediction
dc.keywordsMachine-learning
dc.keywordsPrediction accuracy
dc.keywordsPrimary sequences
dc.keywordsProtein interaction
dc.keywordsRandom forests
dc.keywordsBioinformatics
dc.keywordsDecision trees
dc.keywordsLearning systems
dc.keywordsPeptides
dc.keywordsForecasting
dc.languageEnglish
dc.publisherIEEE
dc.source2010 5th International Symposium on Health Informatics and Bioinformatics, HIBIT 2010
dc.subjectBiology
dc.subjectComputer engineering
dc.subjectBioinformatics
dc.titleInteraction prediction of PDZ domains using a machine learning approach
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-4202-4049
local.contributor.authorid0000-0002-2297-2113
local.contributor.authorid0000-0003-2264-0757
local.contributor.kuauthorKeskin, Özlem
local.contributor.kuauthorGürsoy, Attila
local.contributor.kuauthorKalyoncu, Sibel
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files