Publication:
Qsar analysis of 1,4-dihydropyridine calcium channel antogonists

dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorTürkay, Metin
dc.contributor.kuauthorKahraman, Pınar
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileMaster Student
dc.contributor.otherDepartment of Industrial Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid24956
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:51:36Z
dc.date.issued2007
dc.description.abstractThe early prediction of activity related characteristics of drug candidates is an important problem in drug design. The activities of drug candidates are classified as low or high depending on their IC50 values. Since experimental determination of IC50 values for a vast number of molecules is both time consuming and expensive, computational approaches are employed. In this paper, we present a novel approach to classify the activities of drug molecules. We use hyper-boxes classification method in combination with partial least squares regression to determine the most relevant molecular descriptors of the drug molecules in efficient classification. The effectiveness of the approach is illustrated on DHP derivatives. The results indicate that the proposed approach outperforms the other approaches reported in the literature.
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume24
dc.identifier.doi10.1016/S1570-7946(07)80187-8
dc.identifier.isbn9780-4445-3157-5
dc.identifier.issn1570-7946
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-43049159451anddoi=10.1016%2fS1570-7946%2807%2980187-8andpartnerID=40andmd5=9ff19a9ccb74b3fd035e83067ea957e5
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-43049159451
dc.identifier.urihttp://dx.doi.org/10.1016/S1570-7946(07)80187-8
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14741
dc.identifier.wos287727400165
dc.keywordsData classification
dc.keywordsDrug design
dc.keywordsMixed-integer programming
dc.keywordsQSAR analysis
dc.languageEnglish
dc.publisherElsevier
dc.sourceComputer Aided Chemical Engineering
dc.subjectIndustrial engineering
dc.titleQsar analysis of 1,4-dihydropyridine calcium channel antogonists
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-4769-6714
local.contributor.authoridN/A
local.contributor.kuauthorTürkay, Metin
local.contributor.kuauthorKahraman, Pınar
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscoveryd6d00f52-d22d-4653-99e7-863efcd47b4a

Files