Publication:
Two stage domain adapted training for better generalization in real-world image restoration and super resolution

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuauthorKorkmaz, Cansu
dc.contributor.kuauthorDoğan, Zafer
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid26207
dc.contributor.yokidN/A
dc.contributor.yokid280658
dc.date.accessioned2024-11-09T12:39:48Z
dc.date.issued2021
dc.description.abstractIt is well-known that in inverse problems, end-to-end trained networks overfit the degradation model seen in the training set, i.e., they do not generalize to other types of degradations well. Recently, an approach to first map images downsampled by unknown filters to bicubicly downsampled look-alike images was proposed to successfully super-resolve such images. In this paper, we show that any inverse problem can be formulated by first mapping the input degraded images to an intermediate domain, and then training a second network to form output images from these intermediate images. Furthermore, the best intermediate domain may vary according to the task. Our experimental results demonstrate that this two-stage domain-adapted training strategy does not only achieve better results on a given class of unknown degradations but can also generalize to other unseen classes of degradations better.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorship2232 International Fellowship for Outstanding Researchers Award
dc.description.sponsorshipTurkish National Academy of Science of Turkey
dc.description.sponsorshipTurkish Is Bank (KUIS) AI Center
dc.description.versionPublisher version
dc.formatpdf
dc.identifier.doi10.1109/ICIP42928.2021.9506380
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03584
dc.identifier.isbn9.78167E+12
dc.identifier.issn1522-4880
dc.identifier.linkhttps://doi.org/10.1109/ICIP42928.2021.9506380
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85125595762
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2133
dc.identifier.wos819455100115
dc.keywordsDomain adaptation
dc.keywordsGeneralization
dc.keywordsImage restoration
dc.keywordsImage super-resolution
dc.keywordsOverfitting degradation model
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno118C337
dc.relation.grantno120C156
dc.relation.grantno 217E033
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10450
dc.sourceProceedings - International Conference on Image Processing, ICIP
dc.subjectConvolutional neural network
dc.subjectHallucinations
dc.subjectSparse representation
dc.titleTwo stage domain adapted training for better generalization in real-world image restoration and super resolution
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-1465-8121
local.contributor.authoridN/A
local.contributor.authorid0000-0002-5078-4590
local.contributor.kuauthorTekalp, Ahmet Murat
local.contributor.kuauthorKorkmaz, Cansu
local.contributor.kuauthorDoğan, Zafer
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10450.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format