Publication:
Blind bounded source separation using neural networks with local learning rules

dc.contributor.coauthorPehlevan, Cengiz
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErdoğan, Alper Tunga
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid41624
dc.date.accessioned2024-11-09T22:49:49Z
dc.date.issued2020
dc.description.abstractAn important problem encountered by both natural and engineered signal processing systems is blind source separation. In many instances of the problem, the sources are bounded by their nature and known to be so, even though the particular bound may not be known. To separate such bounded sources from their mixtures, we propose a new optimization problem, Bounded Similarity Matching (BSM). A principled derivation of an adaptive BSM algorithm leads to a recurrent neural network with a clipping nonlinearity. The network adapts by local learning rules, satisfying an important constraint for both biological plausibility and implementability in neuromorphic hardware. © 2020 IEEE.
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipThe Institute of Electrical and Electronics Engineers, Signal Processing Society
dc.description.volume2020-May
dc.identifier.doi10.1109/ICASSP40776.2020.9053114
dc.identifier.isbn9781-5090-6631-5
dc.identifier.issn1520-6149
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089246509&doi=10.1109%2fICASSP40776.2020.9053114&partnerID=40&md5=ac6a78b2df55fadb4b0b1536898c2d87
dc.identifier.scopus2-s2.0-85089246509
dc.identifier.urihttp://dx.doi.org/10.1109/ICASSP40776.2020.9053114
dc.identifier.urihttps://hdl.handle.net/20.500.14288/6568
dc.identifier.wos615970404012
dc.keywordsBlind source separation
dc.keywordsBounded component analysis
dc.keywordsLocal update rule
dc.keywordsRecurrent neural networks
dc.keywordsSimilarity matching audio signal processing
dc.keywordsRecurrent neural networks
dc.keywordsSpeech communication
dc.keywordsImplementability
dc.keywordsLocal learning
dc.keywordsNeuromorphic hardwares
dc.keywordsOptimization problems
dc.keywordsSignal processing systems
dc.keywordsSimilarity-matching
dc.keywordsBlind source separation
dc.languageEnglish
dc.publisherThe Institute of Electrical and Electronics Engineers, Signal Processing Society
dc.sourceICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
dc.subjectAcoustics
dc.subjectEngineering
dc.subjectElectrical electronic engineering
dc.titleBlind bounded source separation using neural networks with local learning rules
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-0876-2897
local.contributor.kuauthorErdoğan, Alper Tunga
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files