Publication:
Preferential amplification of rising versus falling frequency whistler mode signals

dc.contributor.coauthorLi, J. D.
dc.contributor.coauthorHarid, V.
dc.contributor.coauthorSpasojevic, M.
dc.contributor.coauthorGolkowski, M.
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorİnan, Umran Savaş
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid177880
dc.date.accessioned2024-11-09T11:51:16Z
dc.date.issued2015
dc.description.abstractAnalysis of ground-based ELF/VLF observations of injected whistler mode waves from the 1986 Siple Station experiment demonstrates the preferential magnetospheric amplification of rising over descending frequency-time ramps. From examining conjugate region receptions of 1 kHz/s frequency-time ramps, we find that rising ramps generate an average total power 1.9 times higher than that of falling frequency ramps when both are observed during a transmission. And in 17% of receptions, only rising ramps are observed above the noise floor. Furthermore, the amplification ratio inversely correlates with the noise and total signal power. Using a narrowband Vlasov-Maxwell numerical simulation, we explore the preferential amplification due to differences in linear growth rate as a function of frequency, relative to the frequency which maximizes the linear growth rate for a given anisotropy, and in nonlinear phase trapping. These results contribute to the understanding of magnetospheric wave amplification and the preference for structured rising elements in chorus.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipAFRL
dc.description.sponsorshipNSF Career
dc.description.versionPublisher version
dc.description.volume42
dc.formatpdf
dc.identifier.doi10.1002/2014GL062359
dc.identifier.eissn1944-8007
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00980
dc.identifier.issn0094-8276
dc.identifier.linkhttps://doi.org/10.1002/2014GL062359
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-84923619168
dc.identifier.urihttps://hdl.handle.net/20.500.14288/705
dc.identifier.wos349956000004
dc.keywordsSiple station
dc.keywordsWave
dc.keywordsParticle interaction
dc.keywordsRadiation belts
dc.keywordsELF
dc.keywordsVLF
dc.keywordsNumerical simulation
dc.languageEnglish
dc.publisherAmerican Geophysical Union (AGU)
dc.relation.grantnoFA9453-11-C-0011
dc.relation.grantno27239350-50917-B
dc.relation.grantno1254365
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/981
dc.sourceGeophysical Research Letters
dc.subjectMultidisciplinary geosciences
dc.subjectGeology
dc.titlePreferential amplification of rising versus falling frequency whistler mode signals
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-5837-5807
local.contributor.kuauthorİnan, Umran Savaş
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
981.pdf
Size:
2.21 MB
Format:
Adobe Portable Document Format