Publication:
Improved learning cycle assessment of stimulated wells' performance through advanced mathematical modeling

dc.contributor.coauthorDonovan, Diane
dc.contributor.coauthorAzadi, Mohsen
dc.contributor.coauthorGanpule, Sameer
dc.contributor.coauthorNuralishahi, Turaj
dc.contributor.coauthorSmith, Andrew
dc.contributor.coauthorJosserand, Sylvain
dc.contributor.coauthorThompson, Bevan
dc.contributor.coauthorReay, Thomas
dc.contributor.coauthorGay, Laura
dc.contributor.coauthorBurrage, Kevin
dc.contributor.coauthorBurrage, Pamela
dc.contributor.coauthorLawson, Brodie
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorYazıcı, Emine Şule
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid27432
dc.date.accessioned2024-11-09T23:54:26Z
dc.date.issued2022
dc.description.abstractIn this paper, we forecast cumulative production for stimulated gas wells using a combination of fast-to-implement modeling methodologies, including polynomial chaos expansion (PCE) and Gaussian processes (GP) proxy models coupled with populations of phenomenological models (POMs). These modeling techniques allow for a reduction in forecast uncertainty and are shown to be effective techniques for extrapolating early time data for stimulated well production from a field of wells in the Surat Basin, Queensland, Australia. The proposed techniques strategically capture and capitalize on production trends across an entire gas field, even in the presence of early production transients. We demonstrate that learning cycles can be shortened, leading to reasonable forecasts, as well as meaningful and actionable insights.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue3
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipAustralia Pacific LNG (APLNG)
dc.description.sponsorshipOrigin Energy Ltd.
dc.description.sponsorshipConocoPhillips Company
dc.description.sponsorshipSinopec The authors would like to thank Australia Pacific LNG (APLNG) and shareholders, that is, Origin Energy Ltd., ConocoPhillips Company, and Sinopec for sponsoring and permission to publish this paper.
dc.description.volume27
dc.identifier.doi10.2118/209222-PA
dc.identifier.eissn1930-0220
dc.identifier.issn1086-055X
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85135115646
dc.identifier.urihttp://dx.doi.org/10.2118/209222-PA
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15189
dc.identifier.wos812927700023
dc.keywordsUncertainty Quantification
dc.keywordsProbabilistic-Collocation
dc.languageEnglish
dc.publisherSoc Petroleum Eng
dc.sourceSpe Journal
dc.subjectPetroleum engineering
dc.titleImproved learning cycle assessment of stimulated wells' performance through advanced mathematical modeling
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-6824-451X
local.contributor.kuauthorYazıcı, Emine Şule
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files