Publication:
Probabilistic modeling of joint-context in distributional similarity

dc.contributor.coauthorMelamud, Oren
dc.contributor.coauthorDagan, Ido
dc.contributor.coauthorGoldberger, Jacob
dc.contributor.coauthorSzpektor, Idan
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYüret, Deniz
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T23:51:29Z
dc.date.issued2014
dc.description.abstractMost traditional distributional similarity models fail to capture syntagmatic patterns that group together multiple word features within the same joint context. In this work we introduce a novel generic distributional similarity scheme under which the power of probabilistic models can be leveraged to effectively model joint contexts. Based on this scheme, we implement a concrete model which utilizes probabilistic n-gram language models. Our evaluations suggest that this model is particularly well-suited for measuring similarity for verbs, which are known to exhibit richer syntagmatic patterns, while maintaining comparable or better performance with respect to competitive baselines for nouns. Following this, we propose our scheme as a framework for future semantic similarity models leveraging the substantial body of work that exists in probabilistic language modeling.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipGoogle
dc.description.sponsorshipMicrosoft Research
dc.identifier.doi10.3115/v1/w14-1619
dc.identifier.isbn9781-9416-4302-0
dc.identifier.scopus2-s2.0-84943776508
dc.identifier.urihttps://doi.org/10.3115/v1/w14-1619
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14720
dc.keywordsComputational linguistics
dc.keywordsNatural language processing systems
dc.keywordsSemantics
dc.keywordsDistributional similarities
dc.keywordsMeasuring similarities
dc.keywordsN-gram language models
dc.keywordsProbabilistic language
dc.keywordsProbabilistic modeling
dc.keywordsProbabilistic models
dc.keywordsSemantic similarity model
dc.keywordsSyntagmatic patterns
dc.keywordsModeling languages
dc.language.isoeng
dc.publisherAssociation for Computational Linguistics (ACL)
dc.relation.ispartofCoNLL 2014 - 18th Conference on Computational Natural Language Learning, Proceedings
dc.subjectComputer science
dc.titleProbabilistic modeling of joint-context in distributional similarity
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorYüret, Deniz
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files