Publication:
Synthesis of nanostructured materials using supercritical CO2: part II. chemical transformations

Placeholder

Program

KU Authors

Co-Authors

Advisor

Publication Date

2012

Language

English

Type

Review

Journal Title

Journal ISSN

Volume Title

Abstract

This article, the second part of our review series on the use of supercritical carbon dioxide (scCO(2)) for synthesis of nanostructured material deals with the production techniques that involve chemical transformations. Taking advantage of both solvent and anti-solvent tunable properties of scCO(2), many nanostructured materials including supported/unsupported nanoparticles, quantum nanodots, nanofilms, nanorods, nanofoams, and nanowires can be prepared. Furthermore, material surfaces can be functionalized using scCO(2). scCO(2) can also be used as a carbon source for the controlled synthesis of carbon nanotubes and fullerenes or as an oxygen source for metal oxide nanostructures. Moreover, materials produced using scCO(2) does not usually need additional purification or drying steps. Depending on surface properties, the morphology of the final material can be adjusted by tuning the process conditions and the reactant concentrations.

Description

Source:

Journal Of Materials Science

Publisher:

Springer

Keywords:

Subject

Materials science

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details