Publication:
Quantum optical two-atom thermal diode

dc.contributor.coauthorOpatrny, Tomas
dc.contributor.coauthorKurizki, Gershon
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
dc.contributor.kuauthorNaseem, Muhammad Tahir
dc.contributor.kuauthorKargı, Cahit
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Physics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid1674
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T12:39:01Z
dc.date.issued2019
dc.description.abstractWe put forward a quantum-optical model for a thermal diode based on heat transfer between two thermal baths through a pair of interacting qubits. We find that if the qubits are coupled by a Raman field that induces an anisotropic interaction, heat flow can become nonreciprocal and undergoes rectification even if the baths produce equal dissipation rates of the qubits, and these qubits can be identical, i.e., mutually resonant. The heat flow rectification is explained by four-wave mixing and Raman transitions between dressed states of the interacting qubits and is governed by a global master equation. The anisotropic two-qubit interaction is the key to the operation of this simple quantum thermal diode, whose resonant operation allows for high-efficiency rectification of large heat currents. Effects of spatial overlap of the baths are addressed. We discuss the possible realizations of the model in various platforms, including optomechanical setups, systems of trapped ions, and circuit QED.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipCzech Science Foundation (GACR)
dc.description.sponsorshipKoç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM)
dc.description.sponsorshipDFG
dc.description.sponsorshipISF
dc.description.sponsorshipSAERI
dc.description.versionAuthor's final manuscript
dc.description.volume99
dc.formatpdf
dc.identifier.doi10.1103/PhysRevE.99.042121
dc.identifier.eissn2470-0053
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01866
dc.identifier.issn2470-0045
dc.identifier.linkhttps://doi.org/10.1103/PhysRevE.99.042121
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85064875031
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2038
dc.identifier.wos464750500001
dc.keywordsHeat-flow
dc.keywordsMoving mirror
dc.keywordsRadiation
dc.keywordsEnergy
dc.keywordsCavity
dc.keywordsAtom
dc.languageEnglish
dc.publisherAmerican Physical Society (APS)
dc.relation.grantno17-20479S
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8559
dc.sourcePhysical Review E
dc.subjectPhysics, fluids and plasmas
dc.subjectPhysics, mathematical
dc.titleQuantum optical two-atom thermal diode
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-9134-3951
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
local.contributor.kuauthorNaseem, Muhammad Tahir
local.contributor.kuauthorKargı, Cahit
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8559.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format