Publication:
Ultracold fermions in real or fictitious magnetic fields: BCS-BEC evolution and type-I–type-II transition

Thumbnail Image

Organizational Units

Program

KU Authors

Co-Authors

de Melo, C. A. R. Sa

Advisor

Publication Date

2011

Language

English

Type

Journal Article

Journal Title

Journal ISSN

Volume Title

Abstract

We study ultracold neutral fermion superfluids in the presence of fictitious magnetic fields, as well as charged fermion superfluids in the presence of real magnetic fields. Charged fermion superfluids undergo a phase transition from type-I to type-II superfluidity, where the magnetic properties of the superfluid change from being a perfect diamagnet without vortices to a partial diamagnet with the emergence of the Abrikosov vortex lattice. The transition from type-I to type-II superfluidity is tuned by changing the scattering parameter (interaction) for fixed density. We also find that neutral fermion superfluids such as 6Li and 40K are extreme type-II superfluids and are more robust to the penetration of a fictitious magnetic field in the BCS-BEC crossover region near unitarity, where the critical fictitious magnetic field reaches a maximum as a function of the scattering parameter (interaction).

Description

Source:

Physical Review A

Publisher:

American Physical Society (APS)

Keywords:

Subject

Optics, Physics

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details