Publication:
The role of autoregressive conditional skewness and kurtosis in the estimation of conditional var

dc.contributor.coauthorMo, Hengyong
dc.contributor.coauthorTang, Yi
dc.contributor.departmentDepartment of Economics
dc.contributor.kuauthorBali, Turan
dc.contributor.kuprofileOther
dc.contributor.otherDepartment of Economics
dc.contributor.schoolcollegeinstituteCollege of Administrative Sciences and Economics
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T22:49:23Z
dc.date.issued2008
dc.description.abstractThis paper investigates the role of high-order moments in the estimation of conditional value at risk (VaR). We use the skewed generalized t distribution (SGT) with time-varying parameters to provide an accurate characterization of the tails of the standardized return distribution. We allow the high-order moments of the SGT density to depend on the past information set, and hence relax the conventional assumption in conditional VaR calculation that the distribution of standardized returns is iid. The maximum likelihood estimates show that the time-varying conditional volatility, skewness, tail-thickness, and peakedness parameters of the SGT density are statistically significant. The in-sample and out-of-sample performance results indicate that the conditional SGT-GARCH approach with autoregressive conditional skewness and kurtosis provides very accurate and robust estimates of the actual VaR thresholds.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipThe authors thank two anonymous referees for their extremely helpful comments and suggestions. We also benefited from discussions with Linda Allen, Ozgur Demirtas, Robert Engle, Armen Hovakimian, Susan Ji, Lin Peng, Robert Schwartz, and Liuren Wu. The authors also thank seminar participants at Baruch College, Koc University, and the 2006 Financial Management Association meeting. All errors remain ours. The views expressed herein are the authors own and do not necessary reflect those of the Credit Suisse or its staff.
dc.description.volume32
dc.identifier.doi10.1016/j.jbankfin.2007.03.009
dc.identifier.eissn1872-6372
dc.identifier.issn0378-4266
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-38849173159
dc.identifier.urihttp://dx.doi.org/10.1016/j.jbankfin.2007.03.009
dc.identifier.urihttps://hdl.handle.net/20.500.14288/6469
dc.identifier.wos254137400008
dc.keywordsConditional value at risk
dc.keywordsGARCH
dc.keywordsSkewed generalized t distribution
dc.keywordsConditional skewness and kurtosis
dc.languageEnglish
dc.publisherElsevier
dc.sourceJournal of Banking and Finance
dc.subjectBusiness, finance
dc.subjectEconomics
dc.titleThe role of autoregressive conditional skewness and kurtosis in the estimation of conditional var
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.kuauthorBali, Turan
relation.isOrgUnitOfPublication7ad2a3bb-d8d9-4cbd-a6a3-3ca4b30b40c3
relation.isOrgUnitOfPublication.latestForDiscovery7ad2a3bb-d8d9-4cbd-a6a3-3ca4b30b40c3

Files