Publication:
Mechanics of a pressure-controlled adhesive membrane for soft robotic gripping on curved surfaces

dc.contributor.coauthorSong, Sukho
dc.contributor.coauthorDrotlef, Dirk-M
dc.contributor.coauthorPaIk, Jamie
dc.contributor.coauthorMajidi, Carmel
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T13:07:06Z
dc.date.issued2019
dc.description.abstractThis paper aims at understanding the adhesion mechanics of a pressure-controlled adhesive thin elastomeric membrane for soft robotic gripping on non-planar, curved surfaces. The adhesive elastic membrane is lined with gecko-inspired microfiber arrays and can be inflated or deflated by controlled internal air pressure. Previous studies with the soft robotic grippers using dry adhesives showed repeatable adhesion and transfer printing of various non-planar objects with high reliability. In this study, we perform experimental characterization and theoretical analysis to better understand the influence of size and shape of the adhering curved objects on the range of internal air pressures as well as the force profile. In addition, decrease in the internal air pressure results in an increased pull-off force associated with a change in the range of gripper retraction for pulling off the membrane on various curved surfaces. An approximate analytical model dealing with the complex boundary conditions presented in this paper can provide quantitative estimates of pull-off forces for a wide variety of surface curvatures and internal air pressures, as well as qualitative understanding of how force profiles change under moderate pressure differentials.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipMax Planck Society
dc.description.versionPublisher version
dc.description.volume30
dc.formatpdf
dc.identifier.doi10.1016/j.eml.2019.100485
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01735
dc.identifier.issn2352-4316
dc.identifier.linkhttps://doi.org/10.1016/j.eml.2019.100485
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85066168665
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2551
dc.identifier.wos477989000002
dc.keywordsMaterials science
dc.keywordsMechanics
dc.keywordsAdhesion mechanics
dc.keywordsControllable adhesion
dc.keywordsElastic membrane
dc.keywordsFibrillar adhesives
dc.keywordsSoft robotic gripper
dc.keywordsTransfer printing
dc.languageEnglish
dc.publisherElsevier
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8351
dc.sourceExtreme Mechanics Letters
dc.subjectScience and technology
dc.subjectEngineering
dc.titleMechanics of a pressure-controlled adhesive membrane for soft robotic gripping on curved surfaces
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8351.pdf
Size:
2.64 MB
Format:
Adobe Portable Document Format