Publication:
Optimization of encoding configuration in scalable multiple description coding for rate-adaptive P2P video multicasting

dc.contributor.coauthorAbanoz, Tenzile Berkin
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid26207
dc.date.accessioned2024-11-09T23:59:20Z
dc.date.issued2009
dc.description.abstractIt is well-known that in peer-to-peer (P2P) streaming from a single source, single point of failure can be avoided by multiple description coding over multiple multicast trees since it provides path diversity. In this scenario, we propose using scalable multiple description coding (SMDC), where each description is scalable so that all descriptions can be efficiently adapted to the available rate of each link for effective congestion control. We also propose a multiple objective optimization (MOO) framework for selection of the best encoding configuration for SMDC from a set of candidates, which will strike the best balance between minimizing average end-to-end rate-distortion performance of each description given a set of packet loss probabilities, while minimizing overall redundancy and maximizing the range of extraction points of each scalable description. The optimization variables are some SVC encoding parameters and MD generation alternatives that result in different levels of redundancy at a fixed total rate for all descriptions. The framework can be used for optimization over other SVC encoding variables and MD generation methods if desired. Results of Monte-Carlo simulation of SMDC streaming of videos demonstrate the performance of the proposed method.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipTurkish Academy of Sciences (TUBA) A. Murat Tekalp acknowledges support from Turkish Academy of Sciences (TUBA).
dc.identifier.doi10.1109/ICIP.2009.5414496
dc.identifier.isbn978-1-4244-5653-6
dc.identifier.issn1522-4880
dc.identifier.scopus2-s2.0-77951953597
dc.identifier.urihttp://dx.doi.org/10.1109/ICIP.2009.5414496
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15623
dc.identifier.wos280464301381
dc.keywordsScalable video coding
dc.keywordsMultiple description video coding
dc.keywordsCongestion control
dc.keywordsPeer-to-peer video
dc.keywordsEncoding optimization
dc.languageEnglish
dc.publisherIEEE
dc.source2009 16th IEEE International Conference On Image Processing, Vols 1-6
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.subjectInformation systems
dc.subjectElectrical electronics engineerings engineering
dc.titleOptimization of encoding configuration in scalable multiple description coding for rate-adaptive P2P video multicasting
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-1465-8121
local.contributor.kuauthorTekalp, Ahmet Murat
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files