Publication:
Learning gene regulation from microarray data via hidden Markov models

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorGürsoy, Attila
dc.contributor.kuauthorAbalı, Ali Özgür
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileMaster Student
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid34503
dc.contributor.yokid8745
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:52:19Z
dc.date.issued2007
dc.description.abstractAn important problem in computational biology is prediction of gene regulatory networks. There are many approaches to this problem. However Hidden Markov Models that are known to show high performance in signal similarity related uses are hard to come by in literature [1]. We have shown through our investigations that this method outperforms Correlation method. Furthermore, it is clear that this method can be improved to achieve even higher performance. Hidden Markov Models are a reasonable candidate in becoming a useful tool in predicting gene regulatory networks./ Öz: Hesaplamali biyolojide gen düzenleme ağlarının tahmini önemli bir problemdir. Bu problem üzerine yapılmış bir çok çalışma vardır. Ancak sinyal benzerliği konusunda yüksek başarım gösterdiği bilinen saklı Markov modellerinin bu konuya uygulanması literatürde sık karşılaşılan bir yöntem değildir. Bu yöntemin incelenmesi, yöntemin istatistiki ilinti yönteminden daha başarılı olduğunu göstermektedir. Ayrıca bu yöntemin geliştirilmesi ile daha yüksek başarı sağlanmasi da mülmkündür. Saklı Markov modelleri gen ağlarının tahmininde faydalı bir araç olmaya adaydır.
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/SIU.2007.4298830
dc.identifier.isbn1424-4071-92
dc.identifier.isbn9781-4244-0719-4
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-50249108441anddoi=10.1109%2fSIU.2007.4298830andpartnerID=40andmd5=f4650c56470c4df2992b5d51450db5b2
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-50249108441
dc.identifier.urihttp://dx.doi.org/10.1109/SIU.2007.4298830
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14838
dc.identifier.wos252924600019
dc.keywordsComputational biology
dc.keywordsGene regulations
dc.keywordsGene regulatory networks
dc.keywordsHidden Markov modeling
dc.keywordsMicroarray data
dc.keywordsBioinformatics
dc.keywordsComputational grammars
dc.keywordsCorrelation methods
dc.keywordsForecasting
dc.keywordsLaws and legislation
dc.keywordsLearning systems
dc.keywordsMarkov processes
dc.keywordsObject recognition
dc.keywordsSignal processing
dc.keywordsHidden Markov models
dc.languageTurkish
dc.publisherIEEE
dc.source2007 IEEE 15th Signal Processing and Communications Applications, SIU
dc.subjectEngineering
dc.subjectElectrical electronics engineering
dc.subjectEngineering
dc.subjectComputer engineering
dc.titleLearning gene regulation from microarray data via hidden Markov models
dc.title.alternativeSaklı Markov modelleri aracılığı ile gen düzenlenmelerinin mikrodizi verilerinden öǧrenilmesi
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-2715-2368
local.contributor.authorid0000-0002-2297-2113
local.contributor.authoridN/A
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorGürsoy, Attila
local.contributor.kuauthorAbalı, Ali Özgür
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files