Publication: Learning gene regulation from microarray data via hidden Markov models
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.department | N/A | |
dc.contributor.kuauthor | Erzin, Engin | |
dc.contributor.kuauthor | Gürsoy, Attila | |
dc.contributor.kuauthor | Abalı, Ali Özgür | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.kuprofile | Master Student | |
dc.contributor.other | Department of Computer Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.yokid | 34503 | |
dc.contributor.yokid | 8745 | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T23:52:19Z | |
dc.date.issued | 2007 | |
dc.description.abstract | An important problem in computational biology is prediction of gene regulatory networks. There are many approaches to this problem. However Hidden Markov Models that are known to show high performance in signal similarity related uses are hard to come by in literature [1]. We have shown through our investigations that this method outperforms Correlation method. Furthermore, it is clear that this method can be improved to achieve even higher performance. Hidden Markov Models are a reasonable candidate in becoming a useful tool in predicting gene regulatory networks./ Öz: Hesaplamali biyolojide gen düzenleme ağlarının tahmini önemli bir problemdir. Bu problem üzerine yapılmış bir çok çalışma vardır. Ancak sinyal benzerliği konusunda yüksek başarım gösterdiği bilinen saklı Markov modellerinin bu konuya uygulanması literatürde sık karşılaşılan bir yöntem değildir. Bu yöntemin incelenmesi, yöntemin istatistiki ilinti yönteminden daha başarılı olduğunu göstermektedir. Ayrıca bu yöntemin geliştirilmesi ile daha yüksek başarı sağlanmasi da mülmkündür. Saklı Markov modelleri gen ağlarının tahmininde faydalı bir araç olmaya adaydır. | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | WoS | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.identifier.doi | 10.1109/SIU.2007.4298830 | |
dc.identifier.isbn | 1424-4071-92 | |
dc.identifier.isbn | 9781-4244-0719-4 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-50249108441anddoi=10.1109%2fSIU.2007.4298830andpartnerID=40andmd5=f4650c56470c4df2992b5d51450db5b2 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-50249108441 | |
dc.identifier.uri | http://dx.doi.org/10.1109/SIU.2007.4298830 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/14838 | |
dc.identifier.wos | 252924600019 | |
dc.keywords | Computational biology | |
dc.keywords | Gene regulations | |
dc.keywords | Gene regulatory networks | |
dc.keywords | Hidden Markov modeling | |
dc.keywords | Microarray data | |
dc.keywords | Bioinformatics | |
dc.keywords | Computational grammars | |
dc.keywords | Correlation methods | |
dc.keywords | Forecasting | |
dc.keywords | Laws and legislation | |
dc.keywords | Learning systems | |
dc.keywords | Markov processes | |
dc.keywords | Object recognition | |
dc.keywords | Signal processing | |
dc.keywords | Hidden Markov models | |
dc.language | Turkish | |
dc.publisher | IEEE | |
dc.source | 2007 IEEE 15th Signal Processing and Communications Applications, SIU | |
dc.subject | Engineering | |
dc.subject | Electrical electronics engineering | |
dc.subject | Engineering | |
dc.subject | Computer engineering | |
dc.title | Learning gene regulation from microarray data via hidden Markov models | |
dc.title.alternative | Saklı Markov modelleri aracılığı ile gen düzenlenmelerinin mikrodizi verilerinden öǧrenilmesi | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-2715-2368 | |
local.contributor.authorid | 0000-0002-2297-2113 | |
local.contributor.authorid | N/A | |
local.contributor.kuauthor | Erzin, Engin | |
local.contributor.kuauthor | Gürsoy, Attila | |
local.contributor.kuauthor | Abalı, Ali Özgür | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae |