Publication:
EpiDOL: epidemic density adaptive data dissemination exploiting opposite lane in VANETs

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorErgen, Sinem Çöleri
dc.contributor.kuauthorNizamoğlu, İrem
dc.contributor.kuauthorÖzkasap, Öznur
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T23:57:27Z
dc.date.issued2013
dc.description.abstractVehicular ad-hoc networks (VANETs) aim to increase the safety of passengers by making information available beyond the driver’s knowledge. The challenging properties of VANETs such as their dynamic behavior and intermittently connected feature need to be considered when designing a reliable communication protocol in a VANET. In this study, we propose an epidemic and density adaptive protocol for data dissemination in vehicular networks, namely EpiDOL, which utilizes the opposite lane capacity with novel probability functions. We evaluate the performance in terms of end-to-end delay, throughput, overhead and usage ratio of the opposite lane under different vehicular traffic densities via realistic simulations based on SUMO traces in ns-3 simulator. We found out that EpiDOL achieves more than 90% throughput in low densities, and without any additional load to the network 75% throughput in high densities. In terms of throughput EpiDOL outperforms the Edge-Aware and DV-CAST protocols 10% and 40% respectively.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipEUNICE
dc.description.sponsorshipInternational Federation for Information Processing (IFIP)
dc.description.sponsorshipInformationstechnische Gesellschaft (ITG) im VDE
dc.description.sponsorshipTechnische Universitat Chemnitz
dc.description.volume8115 LNCS
dc.identifier.doi10.1007/978-3-642-40552-5_20
dc.identifier.isbn9783-6424-0551-8
dc.identifier.issn0302-9743
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84885694708
dc.identifier.urihttps://doi.org/10.1007/978-3-642-40552-5_20
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15284
dc.keywordsAdaptive protocol
dc.keywordsData dissemination
dc.keywordsDynamic behaviors
dc.keywordsProbability functions
dc.keywordsRealistic simulation
dc.keywordsReliable communication
dc.keywordsVehicular adhoc networks (VANETs)
dc.keywordsVehicular networks
dc.keywordsThroughput
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.subjectGeneral computer science
dc.subjectTheoretical computer science
dc.titleEpiDOL: epidemic density adaptive data dissemination exploiting opposite lane in VANETs
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorNizamoğlu, İrem
local.contributor.kuauthorErgen, Sinem Çöleri
local.contributor.kuauthorÖzkasap, Öznur
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files