Publication:
Influence of severe straining and strain rate on the evolution of dislocation structures during micro-/nanoindentation in high entropy lamellar eutectics

dc.contributor.coauthorMaity, T.
dc.contributor.coauthorPrashanth, K. G.
dc.contributor.coauthorKim, J. T.
dc.contributor.coauthorSchoberl, T.
dc.contributor.coauthorWang, Z.
dc.contributor.coauthorEckert, J.
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorBalcı, Özge
dc.contributor.kuprofileResearcher
dc.contributor.otherDepartment of Chemistry
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid295531
dc.date.accessioned2024-11-09T23:48:03Z
dc.date.issued2018
dc.description.abstractEutectic high entropy composites (EHECs) can exhibit an excellent combination of high strength and high ductility; however, the mechanisms responsible for the strength-ductility trade-off remain unpredicted. The influence of strain rate (epsilon) over dot on the severe deformation imposed by high-pressure torsion (HPT) was used to evaluate the deformation mechanisms for a series of CoCrFeNiNbx (x molar ratio, 0 <= x <= 0.80) EHECs. Systematic and detailed micro-/nanoindentation investigations were performed and the results suggest that strain hardening (Taylor hardening) and grain-boundary strengthening (H-P strengthening) are the predominant strengthening mechanisms. Nanoindentation at different loading conditions (varying (epsilon) over dot) revealed that the measured hardness in the eutectic regime increases gradually because of dislocation-lamellae-interface interactions. Based on the deformation mechanisms operating at different strain rates (epsilon) over dot, the density of geometrically necessary dislocations (GNDs) and statistically stored dislocations (SSDs), determined by the Nix-Gao approach, are used to explain the strain hardening phenomena. The results reveal that a large volume fraction of lamellae-interfaces accommodate more dislocations upon straining these EHECs. Lamellae-interface GNDs (rho(GG)) are activated at higher strain rates and can be effectively stored, thereby improving the global strain and strain hardening.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipERC Advanced Grant "INTELHYB - Next Generation of Complex Metallic Materials in Intelligent Hybrid Structures" [ERC-2013-ADG-340025]
dc.description.sponsorshipNational Natural Science Foundation of China [51701075]
dc.description.sponsorshipFundamental Research Funds for the Central Universities [2017ms009] The authors thank S. Modritsch and P. Kutlesa for their technical assistance to prepare samples for metallography and for high-pressure torsion experiments, respectively. Koc University Surface Science and Technology Center (KUYTAM) is acknowledged for instrumental support. Financial support through the ERC Advanced Grant "INTELHYB - Next Generation of Complex Metallic Materials in Intelligent Hybrid Structures" (Grant ERC-2013-ADG-340025) is gratefully acknowledged. In addition, this work was partially supported by the National Natural Science Foundation of China (Grant No. 51701075), Fundamental Research Funds for the Central Universities (Grant No.2017ms009).
dc.description.volume109
dc.identifier.doi10.1016/j.ijplas.2018.05.012
dc.identifier.eissn1879-2154
dc.identifier.issn0749-6419
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85048242191
dc.identifier.urihttp://dx.doi.org/10.1016/j.ijplas.2018.05.012
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14227
dc.identifier.wos447111500008
dc.keywordsEutectic high entropy alloys
dc.keywordsStrengthening mechanism
dc.keywordsDeformation mechanism
dc.keywordsDislocations
dc.keywordsPlasticity
dc.keywordsMicro-/nanoindentation mechanical-properties
dc.keywordsHigh-strength
dc.keywordsSpherical nanoindentation
dc.keywordsMetallic materials
dc.keywordsGrain-boundary
dc.keywordsSize
dc.keywordsIndentation
dc.keywordsDeformation
dc.keywordsAlloy
dc.keywordsMicrostructure
dc.languageEnglish
dc.publisherElsevier
dc.sourceInternational Journal of Plasticity
dc.subjectEngineering
dc.subjectMechanical
dc.subjectMaterials science
dc.subjectMultidisciplinary
dc.subjectMechanics
dc.titleInfluence of severe straining and strain rate on the evolution of dislocation structures during micro-/nanoindentation in high entropy lamellar eutectics
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-6756-3180
local.contributor.kuauthorBalcı, Özge
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files