Publication: Rapid and accurate screening of the COF space for natural gas purification: COFInformatics
dc.contributor.department | Department of Chemical and Biological Engineering | |
dc.contributor.kuauthor | Aksu, Gökhan Önder | |
dc.contributor.kuauthor | Keskin, Seda | |
dc.contributor.other | Department of Chemical and Biological Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.date.accessioned | 2024-12-29T09:36:03Z | |
dc.date.issued | 2024 | |
dc.description.abstract | In this work, we introduced COFInformatics, a computational approach merging molecular simulations and machine learning (ML) algorithms, to evaluate all synthesized and hypothetical covalent organic frameworks (COFs) for the CO2/CH4 mixture separation under four different adsorption-based processes: pressure swing adsorption (PSA), vacuum swing adsorption (VSA), temperature swing adsorption (TSA), and pressure-temperature swing adsorption (PTSA). We first extracted structural, chemical, energy-based, and graph-based molecular fingerprint features of every single COF structure in the very large COF space, consisting of nearly 70,000 materials, and then performed grand canonical Monte Carlo simulations to calculate the CO2/CH4 mixture adsorption properties of 7540 COFs. These features and simulation results were used to develop ML models that accurately and rapidly predict CO2/CH4 mixture adsorption and separation properties of all 68,614 COFs. The most efficient separation process and the best adsorbent candidates among the entire COF spectrum were identified and analyzed in detail to reveal the most important molecular features that lead to high-performance adsorbents. Our results showed that (i) many hypoCOFs outperform synthesized COFs by achieving higher CO2/CH4 selectivities;(ii) the top COF adsorbents consist of narrow pores and linkers comprising aromatic, triazine, and halogen groups;and (iii) PTSA is the most efficient process to use COF adsorbents for natural gas purification. We believe that COFInformatics promises to expedite the evaluation of COF adsorbents for CO2/CH4 separation, thereby circumventing the extensive, time- and resource-intensive molecular simulations. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.issue | 15 | |
dc.description.openaccess | hybrid | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | TÜBİTAK | |
dc.description.sponsors | S.K. acknowledges ERC-2017-Starting Grant. This study has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-2017-Starting Grant, grant agreement no. 756489-COSMOS). This work is also supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the 1001-Scientific and Technological Research Projects Funding Program (Project Number: 122Z536). The authors declare no competing financial interest. The authors would like to give their special appreciation and thank to Hasan Can Gulbalkan for his efforts put into the article's revision period. | |
dc.description.volume | 16 | |
dc.identifier.doi | 10.1021/acsami.4c01641 | |
dc.identifier.eissn | 1944-8252 | |
dc.identifier.issn | 1944-8244 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85189971310 | |
dc.identifier.uri | https://doi.org/10.1021/acsami.4c01641 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/21922 | |
dc.identifier.wos | 1200651400001 | |
dc.keywords | Covalent organic frameworks | |
dc.keywords | Machine learning | |
dc.keywords | CO2/CH4 separation | |
dc.keywords | Molecular simulation | |
dc.keywords | Adsorption | |
dc.language | en | |
dc.publisher | American Chemical Society | |
dc.relation.grantno | H2020 European Research Council [ERC-2017-Starting] | |
dc.relation.grantno | European Research Council (ERC) under the European Union [ERC-2017-Starting, 756489-COSMOS] | |
dc.relation.grantno | Scientific and Technological Research Council of Turkey (TUBITAK) under the 1001-Scientific and Technological Research Projects Funding Program [122Z536] | |
dc.source | ACS Applied Materials & Interfaces | |
dc.subject | Nanoscience and Nanotechnology | |
dc.subject | Materials science | |
dc.title | Rapid and accurate screening of the COF space for natural gas purification: COFInformatics | |
dc.type | Journal article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Aksu, Gökhan Önder | |
local.contributor.kuauthor | Keskin, Seda | |
relation.isOrgUnitOfPublication | c747a256-6e0c-4969-b1bf-3b9f2f674289 | |
relation.isOrgUnitOfPublication.latestForDiscovery | c747a256-6e0c-4969-b1bf-3b9f2f674289 |