Publication: Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination
dc.contributor.coauthor | Dong, Xiaoguang | |
dc.contributor.coauthor | Lum, Guo Zhan | |
dc.contributor.coauthor | Hu, Wenqi | |
dc.contributor.coauthor | Zhang, Rongjing | |
dc.contributor.coauthor | Ren, Ziyu | |
dc.contributor.coauthor | Onck, Patrick R. | |
dc.contributor.department | Department of Mechanical Engineering | |
dc.contributor.kuauthor | Sitti, Metin | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Mechanical Engineering | |
dc.contributor.schoolcollegeinstitute | School of Medicine | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.yokid | 297104 | |
dc.date.accessioned | 2024-11-09T13:20:05Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Coordinated nonreciprocal dynamics in biological cilia is essential to many living systems, where the emergent metachronal waves of cilia have been hypothesized to enhance net fluid flows at low Reynolds numbers (Re). Experimental investigation of this hypothesis is critical but remains challenging. Here, we report soft miniature devices with both ciliary nonreciprocal motion and metachronal coordination and use them to investigate the quantitative relationship between metachronal coordination and the induced fluid flow. We found that only antiplectic metachronal waves with specific wave vectors could enhance fluid flows compared with the synchronized case. These findings further enable various bioinspired cilia arrays with unique functionalities of pumping and mixing viscous synthetic and biological complex fluids at low Re. Our design method and developed soft miniature devices provide unprecedented opportunities for studying ciliary biomechanics and creating cilia-inspired wireless microfluidic pumping, object manipulation and lab- and organ-on-a-chip devices, mobile microrobots, and bioengineering systems. | |
dc.description.fulltext | YES | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.issue | 45 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | EU | |
dc.description.sponsorship | European Union (European Union) | |
dc.description.sponsorship | Horizon 2020 | |
dc.description.sponsorship | European Research Council (ERC) Advanced Grant | |
dc.description.sponsorship | SoMMoR Project | |
dc.description.sponsorship | Max Planck Society | |
dc.description.version | Publisher version | |
dc.description.volume | 6 | |
dc.format | ||
dc.identifier.doi | 10.1126/sciadv.abc9323 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR02541 | |
dc.identifier.issn | 2375-2548 | |
dc.identifier.link | https://doi.org/10.1126/sciadv.abc9323 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-85095801918 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/3179 | |
dc.identifier.wos | 587544300032 | |
dc.keywords | Transport | |
dc.keywords | Flow | |
dc.keywords | Microorganisms | |
dc.keywords | Paramecium | |
dc.keywords | Propulsion | |
dc.keywords | Patterns | |
dc.keywords | Robots | |
dc.language | English | |
dc.publisher | American Association for the Advancement of Science (AAAS) | |
dc.relation.grantno | 834531 | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9180 | |
dc.source | Science Advances | |
dc.subject | Multidisciplinary sciences | |
dc.title | Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0001-8249-3854 | |
local.contributor.kuauthor | Sitti, Metin | |
relation.isOrgUnitOfPublication | ba2836f3-206d-4724-918c-f598f0086a36 | |
relation.isOrgUnitOfPublication.latestForDiscovery | ba2836f3-206d-4724-918c-f598f0086a36 |
Files
Original bundle
1 - 1 of 1