Publication:
Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination

dc.contributor.coauthorDong, Xiaoguang
dc.contributor.coauthorLum, Guo Zhan
dc.contributor.coauthorHu, Wenqi
dc.contributor.coauthorZhang, Rongjing
dc.contributor.coauthorRen, Ziyu
dc.contributor.coauthorOnck, Patrick R.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T13:20:05Z
dc.date.issued2020
dc.description.abstractCoordinated nonreciprocal dynamics in biological cilia is essential to many living systems, where the emergent metachronal waves of cilia have been hypothesized to enhance net fluid flows at low Reynolds numbers (Re). Experimental investigation of this hypothesis is critical but remains challenging. Here, we report soft miniature devices with both ciliary nonreciprocal motion and metachronal coordination and use them to investigate the quantitative relationship between metachronal coordination and the induced fluid flow. We found that only antiplectic metachronal waves with specific wave vectors could enhance fluid flows compared with the synchronized case. These findings further enable various bioinspired cilia arrays with unique functionalities of pumping and mixing viscous synthetic and biological complex fluids at low Re. Our design method and developed soft miniature devices provide unprecedented opportunities for studying ciliary biomechanics and creating cilia-inspired wireless microfluidic pumping, object manipulation and lab- and organ-on-a-chip devices, mobile microrobots, and bioengineering systems.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue45
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (European Union)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC) Advanced Grant
dc.description.sponsorshipSoMMoR Project
dc.description.sponsorshipMax Planck Society
dc.description.versionPublisher version
dc.description.volume6
dc.formatpdf
dc.identifier.doi10.1126/sciadv.abc9323
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02541
dc.identifier.issn2375-2548
dc.identifier.linkhttps://doi.org/10.1126/sciadv.abc9323
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85095801918
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3179
dc.identifier.wos587544300032
dc.keywordsTransport
dc.keywordsFlow
dc.keywordsMicroorganisms
dc.keywordsParamecium
dc.keywordsPropulsion
dc.keywordsPatterns
dc.keywordsRobots
dc.languageEnglish
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.grantno834531
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9180
dc.sourceScience Advances
dc.subjectMultidisciplinary sciences
dc.titleBioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9180.pdf
Size:
2.75 MB
Format:
Adobe Portable Document Format