Publication: Nanoheterogeneous ZrTa metallic glass thin films with high strength and toughness
dc.contributor.coauthor | Behboud, Ali B. | |
dc.contributor.coauthor | Ozerinc, Sezer | |
dc.contributor.department | N/A | |
dc.contributor.kuauthor | Motallebzadeh, Amir | |
dc.contributor.kuprofile | Researcher | |
dc.contributor.researchcenter | Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM) | |
dc.contributor.schoolcollegeinstitute | N/A | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-10T00:11:44Z | |
dc.date.issued | 2022 | |
dc.description.abstract | This study investigated the mechanical behavior of ZrxTa1-x (x = 21-79 at%) thin films and nanolayered films of ZrTa with modulated composition as model systems to gain insight into the hardness and toughness of metallic glasses and metallic glass nanocomposites. The monolithic films exhibit two primary micro-structures, namely, a fully amorphous form (Zr = 35-70at%.) and an amorphous-crystalline composite (21-30 at% Zr). The amorphous films show a monotonic hardness variation with composition over a wide range of 5.5 - 9 GPa. The partial crystallization of the films results in a further jump in hardness, as opposed to the general trend of softening upon crystallization. The emergence of the crystalline phase also improves the ductility of the films, as verified by nanoindentation-based fracture toughness measurements. The indentation pile-up exhibits several shear bands in the fully amorphous films, replaced by a featureless pileup zone for the case of Zr25Ta75, further verifying the superior toughness of the composite. The second part of the analysis pursued obtaining a similar toughening through fully amorphous nanolayered films of Zr35Ta65 / Zr70Ta30. The results indicate that these films provide a balanced combination of high hardness and enhanced ductility, providing an alternative route to the development of tough metallic glass coatings. Data Availability: The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | NO | |
dc.description.publisherscope | International | |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey, Turkey [218M219] | |
dc.description.sponsorship | METU-BAP Project, Turkey [08-11-2016-072] This research is supported by the Scientific and Technological Research Council of Turkey - Grant#218M219, Turkey, and METU-BAP Project #08-11-2016-072, Turkey. We thank METU Central Laboratory, Koc University KUYTAM, and Bilkent University UNAM for their support in characterization measurements. We thank Robert Maa beta for useful discussions in revising the manuscript. | |
dc.description.volume | 901 | |
dc.identifier.doi | 10.1016/j.jallcom.2021.163578 | |
dc.identifier.eissn | 1873-4669 | |
dc.identifier.issn | 0925-8388 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85122641812 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jallcom.2021.163578 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/17537 | |
dc.identifier.wos | 749785700002 | |
dc.keywords | Metallic glasses | |
dc.keywords | Thin films | |
dc.keywords | Combinatorial sputtering | |
dc.keywords | Nanoindentation | |
dc.keywords | Fracture toughness | |
dc.keywords | Dependent deformation mechanisms | |
dc.keywords | Size-independent strength | |
dc.keywords | Corrosion-resistance | |
dc.keywords | Residual-stress | |
dc.keywords | Elastic-modulus | |
dc.keywords | Indentation | |
dc.keywords | TA | |
dc.keywords | Nanoindentation | |
dc.keywords | Nanocrystalline | |
dc.keywords | Plasticity | |
dc.language | English | |
dc.publisher | Elsevier | |
dc.source | Journal of Alloys and Compounds | |
dc.subject | Chemistry | |
dc.subject | Physical chemistry | |
dc.subject | Materials science | |
dc.subject | Metallurgy | |
dc.subject | Metallurgical engineering | |
dc.title | Nanoheterogeneous ZrTa metallic glass thin films with high strength and toughness | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0001-6753-9316 | |
local.contributor.kuauthor | Motallebzadeh, Amir |