Publication:
Quantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems

dc.contributor.coauthorRabitz, H. A.
dc.contributor.departmentDepartment of Mathematics
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorAşkar, Attila
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokidN/A
dc.contributor.yokid178822
dc.date.accessioned2024-11-09T13:49:07Z
dc.date.issued1999
dc.description.abstractThis paper considers the practical utility of quantum fluid dynamics (QFD) whereby the time-dependent Schrodinger's equation is transformed to observing the dynamics of an equivalent "gas continuum." The density and velocity of this equivalent gas continuum are respectively the probability density and the gradient of the phase of the wave function. The numerical implementation of the QFD equations is carried out within the Lagrangian approach, which transforms the solution of Schrodinger's equation into following the trajectories of a set of mass points, i.e., subparticles, obtained by discretization of the continuum equations. The quantum dynamics of the subparticles which arise in the present formalism through numerical discretization are coupled by the density and the quantum potential. Numerical illustrations are performed for photodissociation of nocl and NO2 treated as two-dimensional models. The dissociation cross sections sigma(omega) are evaluated in the dramatically short CPU times of 33 s for nocl and 40 s for NO2 on a Pentium-200 mhz PC machine. The computational efficiency comes from a combination of (a) the QFD representation dealing with the near monotonic amplitude and phase as dependent variables, (b) the Lagrangian description concentrating the computation effort at all times into regions of highest probability as an optimal adaptive grid, and (c) the use of an explicit time integrator whereby the computational effort grows only linearly with the number of discrete points.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue6
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipDepartment of Energy
dc.description.versionPublisher version
dc.description.volume111
dc.formatpdf
dc.identifier.doi10.1063/1.479520
dc.identifier.eissn1089-7695
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00967
dc.identifier.issn0021-9610
dc.identifier.linkhttps://doi.org/10.1063/1.479520
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-2242491767
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3852
dc.identifier.wos81711200009
dc.keywordsDependent Schrodinger equation
dc.keywordsPotential-energy surfaces
dc.keywordsIon-atom collisions
dc.keywordsMechanical streamlines
dc.keywordsLyapunov exponents
dc.languageEnglish
dc.publisherAmerican Institute of Physics (AIP) Publishing
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/962
dc.sourceJournal of Chemical Physics
dc.subjectChemistry
dc.titleQuantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0003-0444-4787
local.contributor.kuauthorMayor, Fernando Sales
local.contributor.kuauthorAşkar, Attila
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
962.pdf
Size:
313.42 KB
Format:
Adobe Portable Document Format