Publication:
A hierarchically porous nickel-copper phosphide nano-foam for efficient electrochemical splitting of water

dc.contributor.coauthorWei, Li
dc.contributor.coauthorGoh, Kunli
dc.contributor.coauthorKarahan, H. Enis
dc.contributor.coauthorChang, Jian
dc.contributor.coauthorZhai, Shengli
dc.contributor.coauthorChen, Xuncai
dc.contributor.coauthorChen, Yuan
dc.contributor.departmentN/A
dc.contributor.kuauthorBirer, Özgür
dc.contributor.kuprofileResearcher
dc.contributor.researchcenterKoç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM)
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:12:04Z
dc.date.issued2017
dc.description.abstractElectrochemical splitting of water to produce oxygen (O-2) and hydrogen (H-2) through a cathodic hydrogen evolution reaction (HER) and an anodic oxygen evolution reaction (OER) is a promising green approach for sustainable energy supply. Here we demonstrated a porous nickel-copper phosphide (NiCuP) nano-foam as a bifunctional electrocatalyst for highly efficient total water splitting. Prepared from a bubble-templated electrodeposition method and subsequent low-temperature phosphidization, NiCuP has a hierarchical pore structure with a large electrochemical active surface area. To reach a high current density of 50 mA cm(-2), it requires merely 146 and 300 mV with small Tafel slopes of 47 and 49 mV dec(-1) for HER and OER, respectively. The total water splitting test using NiCuP as both the anode and cathode showed nearly 100% Faradic efficiency and surpassed the performances of electrode pairs using commercial Pt/C and IrO2 catalysts under our test conditions. The high activity of NiCuP can be attributed to (1) the conductive NiCu substrates, (2) a large electrochemically active surface area together with a combination of pores of different sizes, and (3) the formation of active Ni/Cu oxides/hydroxides while keeping a portion of more conductive Ni/Cu phosphides in the nano-foam. We expect the current catalyst to enable the manufacturing of affordable water splitting systems.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue13
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipFaculty of Engineering and Information Technologies, the University of Sydney, under the Faculty Research Cluster Program
dc.description.sponsorshipAustralian Research Council [FT160100107]
dc.description.sponsorshipAustralian Research Council [FT160100107] Funding Source: Australian Research Council This research was supported by the Faculty of Engineering and Information Technologies, the University of Sydney, under the Faculty Research Cluster Program and Australian Research Council under the Future Fellowships scheme (FT160100107).
dc.description.volume9
dc.identifier.doi10.1039/c6nr09864a
dc.identifier.eissn2040-3372
dc.identifier.issn2040-3364
dc.identifier.scopus2-s2.0-85016568230
dc.identifier.urihttp://dx.doi.org/10.1039/c6nr09864a
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9754
dc.identifier.wos397968400006
dc.keywordsOxygen evolution reaction
dc.keywordsHydrogen evolution
dc.keywordsCatalytic-activity
dc.keywordsThin-film
dc.keywordsOxide
dc.keywordsNi
dc.keywordsOxidation
dc.keywordsSurface
dc.keywordsFe
dc.keywordsElectrocatalysts
dc.languageEnglish
dc.publisherRoyal Soc Chemistry
dc.sourceNanoscale
dc.subjectChemistry, multidisciplinary
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectMaterials science, Multidisciplinary
dc.subjectPhysics, applied
dc.titleA hierarchically porous nickel-copper phosphide nano-foam for efficient electrochemical splitting of water
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-9382-5954
local.contributor.kuauthorBirer, Özgür

Files