Publication:
Statistical score fusion for 3D object retrieval

dc.contributor.coauthorSankur, Bülent
dc.contributor.coauthorAkgül, Ceyhun Burak
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYemez, Yücel
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid107907
dc.date.accessioned2024-11-09T23:05:21Z
dc.date.issued2008
dc.description.abstractIn this work, we introduce the score fusion problem for 3D object retrieval. Ongoing research in 3D object retrieval shows that no single descriptor is capable of providing fine grain discrimination required by prospective 3D search engines. We present a fusion algorithm that linearly combines similarity information originating from multiple shape descriptors. We learn the optimal set of weights in the linear combination by minimizing the emprical ranking risk. The algorithm is based on a recently introduced rigorous statistical ranking framework, for which consistency and fast rate of convergence of empirical ranking risk minimizers have been established. We report the results of relevance feedback search on a large 3D object database, the Princeton Shape Benchmark. Experiments show that, under query formulations with user intervention, the proposed score fusion scheme boosts the performance of the 3D retrieval machine significantly.
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/SIU.2008.4632607
dc.identifier.isbn9781-4244-1999-9
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-56449112735anddoi=10.1109%2fSIU.2008.4632607andpartnerID=40andmd5=0c63dbb1dfaebe2c328c9abd48b22e1b
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-56449112735
dc.identifier.urihttp://dx.doi.org/10.1109/SIU.2008.4632607
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8781
dc.identifier.wos261359200071
dc.keywords3D object retrievals
dc.keywords3D objects
dc.keywords3D retrievals
dc.keywords3D search engines
dc.keywordsDescriptor
dc.keywordsFine grains
dc.keywordsFusion algorithms
dc.keywordsLinear combinations
dc.keywordsOptimal sets
dc.keywordsQuery formulations
dc.keywordsRate of convergences
dc.keywordsRelevance feedbacks
dc.keywordsScore fusions
dc.keywordsShape descriptors
dc.keywordsStatistical rankings
dc.keywordsUser interventions
dc.keywordsBenchmarking
dc.keywordsControl theory
dc.keywordsFeature extraction
dc.keywordsFeedback
dc.keywordsFusion reactions
dc.keywordsSearch engines
dc.keywordsSignal processing
dc.keywordsThree dimensional
dc.languageTurkish
dc.publisherIEEE
dc.source2008 IEEE 16th Signal Processing, Communication and Applications Conference, SIU
dc.subjectComputer engineering
dc.titleStatistical score fusion for 3D object retrieval
dc.title.alternative3B nesne arama için i̇statistiksel skor tümleştirme
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-7515-3138
local.contributor.kuauthorYemez, Yücel
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files