Publication:
Vocal tract contour tracking in rtMRI using deep temporal regression network

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorAsadiabadi, Sasan
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid34503
dc.date.accessioned2024-11-09T12:11:35Z
dc.date.issued2020
dc.description.abstractRecent advances in real-time Magnetic Resonance Imaging (rtMRI) provide an invaluable tool to study speech articulation. In this paper, we present an effective deep learning approach for supervised detection and tracking of vocal tract contours in a sequence of rtMRI frames. We train a single input multiple output deep temporal regression network (DTRN) to detect the vocal tract (VT) contour and the separation boundary between different articulators. The DTRN learns the non-linear mapping from an overlapping fixed-length sequence of rtMRI frames to the corresponding articulatory movements, where a blend of the overlapping contour estimates defines the detected VT contour. The detected contour is refined at a post-processing stage using an appearance model to further improve the accuracy of VT contour detection. The proposed VT contour tracking model is trained and evaluated over the USC-TIMIT dataset. Performance evaluation is carried out using three objective assessment metrics for the separating landmark detection, contour tracking and temporal stability of the contour landmarks in comparison with three baseline approaches from the recent literature. Results indicate significant improvements with the proposed method over the state-of-the-art baselines.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.description.volume28
dc.formatpdf
dc.identifier.doi10.1109/TASLP.2020.3036182
dc.identifier.eissn2329-9304
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02614
dc.identifier.issn2329-9290
dc.identifier.linkhttps://doi.org/10.1109/TASLP.2020.3036182
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85096832888
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1077
dc.identifier.wos595525300004
dc.keywordsEstimation
dc.keywordsMagnetic resonance imaging
dc.keywordsSpeech processing
dc.keywordsImage segmentation
dc.keywordsTraining
dc.keywordsHeating systems
dc.keywordsTracking
dc.keywordsAppearance model
dc.keywordsContour detection
dc.keywordsDeep neural network
dc.keywordsReal-time magnetic resonance imaging (rtMRI)
dc.keywordsSpeech production
dc.keywordsVocal tract
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9253
dc.sourceIEEE/ACM Transactions on Audio, Speech, and Language Processing
dc.subjectAcoustics
dc.subjectEngineering
dc.titleVocal tract contour tracking in rtMRI using deep temporal regression network
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-2715-2368
local.contributor.kuauthorAsadiabadi, Sasan
local.contributor.kuauthorErzin, Engin
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9253.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format