Publication:
Simulation of H-2/CH4 mixture permeation through MOF membranes using non-equilibrium molecular dynamics

dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorKeskin, Seda
dc.contributor.kuauthorVelioğlu, Sadiye
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T13:10:10Z
dc.date.issued2019
dc.description.abstractGrand canonical Monte Carlo (GCMC) simulations are widely used with equilibrium molecular dynamics (EMD) to predict gas adsorption and diffusion in single-crystals of metal-organic frameworks (MOFs). Adsorption and diffusion data obtained from these simulations are then combined to predict gas permeabilities and selectivities of MOF membranes. This GCMC + EMD approach is highly useful to screen a large number of MOFs for a target membrane-based gas separation process. External field nonequilibrium molecular dynamics (NEMD) simulations, on the other hand, can directly compute gas permeation by providing an accurate representation of MOF membranes but they are computationally demanding and require long simulation times. In this work, we performed NEMD simulations to investigate H-2/CH4 separation performances of MOF membranes. Both single-component and binary mixture permeabilities of H-2 and CH4 were computed using the NEMD approach and results were compared with the predictions of the GCMC + EMD approach and experimental measurements reported in the literature. Our results showed that there is a good agreement between NEMD simulations and experiments for the permeability and selectivity of MOF membranes. NEMD simulations provided the direct observation of the mass transfer resistances on the pore mouth of MOF membranes, which is neglected in the GCMC + EMD approach. Our results suggested that once the very large numbers of MOF materials were screened using the GCMC + EMD approach, more detailed NEMD calculations can be performed for the best membrane candidates to unlock the actual gas transport mechanism before the experimental fabrication of MOF membranes.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipH2020
dc.description.sponsorshipEuropean Research Council (ERC)-2017-Starting Grant
dc.description.sponsorshipCOSMOS
dc.description.versionPublisher version
dc.description.volume7
dc.identifier.doi10.1039/c8ta10167a
dc.identifier.eissn2050-7496
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01528
dc.identifier.issn2050-7488
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85060799362
dc.identifier.urihttps://doi.org/10.1039/c8ta10167a
dc.identifier.wos457546000038
dc.keywordsMetal-organic frameworks
dc.keywordsTransport-properties
dc.keywordsWater transport
dc.keywordsAdsorption
dc.keywordsSeparation
dc.keywordsDiffusion
dc.keywordsEquilibrium
dc.keywordsPhase
dc.keywordsCU-3(BTC)(2)
dc.keywordsAlgorithms
dc.language.isoeng
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.grantno756489
dc.relation.grantnoCOSMOS
dc.relation.ispartofJournal of Materials Chemistry A
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8100
dc.subjectChemistry
dc.subjectEnergy and fuels
dc.subjectMaterials science
dc.titleSimulation of H-2/CH4 mixture permeation through MOF membranes using non-equilibrium molecular dynamics
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorKeskin, Seda
local.contributor.kuauthorVelioğlu, Sadiye
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Chemical and Biological Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8100.pdf
Size:
1.53 MB
Format:
Adobe Portable Document Format