Publication:
Effectiveness of a deep-learning polyp detection system in prospectively collected colonoscopy videos with variable bowel preparation quality

Placeholder

Organizational Units

Organizational Unit

Program

School / College / Institute

SCHOOL OF MEDICINE

KU-Authors

KU Authors

Co-Authors

Becq, Aymeric
Chandnani, Madhuri
Bharadwaj, Shishira
Ernest-Suarez, Kenneth
Gabr, Moamen
Glissen-Brown, Jeremy
Sawhney, Mandeep
Pleskow, Douglas K.
Berzin, Tyler M.

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Background: Colonoscopy is the gold standard for polyp detection, but polyps may be missed. Artificial intelligence (AI) technologies may assist in polyp detection. To date, most studies for polyp detection have validated algorithms in ideal endoscopic conditions. Aim: To evaluate the performance of a deep-learning algorithm for polyp detection in a real-world setting of routine colonoscopy with variable bowel preparation quality. Methods: We performed a prospective, single-center study of 50 consecutive patients referred for colonoscopy. Procedural videos were analyzed by a validated deep-learning AI polyp detection software that labeled suspected polyps. Videos were then re-read by 5 experienced endoscopists to categorize all possible polyps identified by the endoscopist and/or AI, and to measure Boston Bowel Preparation Scale. Results: In total, 55 polyps were detected and removed by the endoscopist. The AI system identified 401 possible polyps. A total of 100 (24.9%) were categorized as "definite polyps;" 53/100 were identified and removed by the endoscopist. A total of 63 (15.6%) were categorized as "possible polyps" and were not removed by the endoscopist. In total, 238/401 were categorized as false positives. Two polyps identified by the endoscopist were missed by AI (false negatives). The sensitivity of AI for polyp detection was 98.8%, the positive predictive value was 40.6%. The polyp detection rate for the endoscopist was 62% versus 82% for the AI system. Mean segmental Boston Bowel Preparation Scale were similar (2.64, 2.59,P=0.47) for true and false positives, respectively. Conclusions: A deep-learning algorithm can function effectively to detect polyps in a prospectively collected series of colonoscopies, even in the setting of variable preparation quality.

Source

Publisher

Lippincott Williams and Wilkins

Subject

Gastroenterology, Hepatology

Citation

Has Part

Source

Journal of Clinical Gastroenterology

Book Series Title

Edition

DOI

10.1097/MCG.0000000000001272

item.page.datauri

Link

Rights

Rights URL (CC Link)

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details