Publication: Deep transcriptome profiling reveals limited conservation of A-to-I RNA editing in Xenopus
Program
KU-Authors
KU Authors
Co-Authors
Nguyen, Tram Anh
Heng, Jia Wei Joel
Ng, Yan Ting
Sun, Rui
Fisher, Shira
Oguz, Gokce
Kaewsapsak, Pornchai
Xue, Shifeng
Reversade, Bruno
Ramasamy, Adaikalavan
Publication Date
Language
Type
Embargo Status
Journal Title
Journal ISSN
Volume Title
Alternative Title
Abstract
Background Xenopus has served as a valuable model system for biomedical research over the past decades. Notably, ADAR was first detected in frog oocytes and embryos as an activity that unwinds RNA duplexes. However, the scope of A-to-I RNA editing by the ADAR enzymes in Xenopus remains underexplored.Results Here, we identify millions of editing events in Xenopus with high accuracy and systematically map the editome across developmental stages, adult organs, and species. We report diverse spatiotemporal patterns of editing with deamination activity highest in early embryogenesis before zygotic genome activation and in the ovary. Strikingly, editing events are poorly conserved across different Xenopus species. Even sites that are detected in both X. laevis and X. tropicalis show largely divergent editing levels or developmental profiles. In protein-coding regions, only a small subset of sites that are found mostly in the brain are well conserved between frogs and mammals.Conclusions Collectively, our work provides fresh insights into ADAR activity in vertebrates and suggest that species-specific editing may play a role in each animal's unique physiology or environmental adaptation.
Source
Publisher
BMC
Subject
Biology
Citation
Has Part
Source
BMC Biology
Book Series Title
Edition
DOI
10.1186/s12915-023-01756-2