Publication:
Semantic segmentation of RGBD videos with recurrent fully convolutional neural networks

dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYurdakul, Ekrem Emre
dc.contributor.kuauthorYemez, Yücel
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid107907
dc.date.accessioned2024-11-10T00:08:12Z
dc.date.issued2017
dc.description.abstractSemantic segmentation of videos using neural networks is currently a popular task, the work done in this field is however mostly on RGB videos. The main reason for this is the lack of large RGBD video datasets, annotated with ground truth information at the pixel level. In this work, we use a synthetic RGBD video dataset to investigate the contribution of depth and temporal information to the video segmentation task using convolutional and recurrent neural network architectures. Our experiments show the addition of depth information improves semantic segmentation results and exploiting temporal information results in higher quality output segmentations.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [114E628, 215E201] This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) Grants 114E628 and 215E201.
dc.identifier.doi10.1109/ICCVW.2017.51
dc.identifier.isbn978-1-5386-1034-3
dc.identifier.issn2473-9936
dc.identifier.scopus2-s2.0-85046250479
dc.identifier.urihttp://dx.doi.org/10.1109/ICCVW.2017.51
dc.identifier.urihttps://hdl.handle.net/20.500.14288/16914
dc.identifier.wos425239600044
dc.keywordsN/A
dc.languageEnglish
dc.publisherIeee
dc.source2017 Ieee International Conference On Computer Vision Workshops (Iccvw 2017)
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.subjectElectrical electronics engineering
dc.titleSemantic segmentation of RGBD videos with recurrent fully convolutional neural networks
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-7515-3138
local.contributor.kuauthorYurdakul, Ekrem Emre
local.contributor.kuauthorYemez, Yücel
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files