Publication:
Competitive nonlinear prediction under additive noise

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorKozat, Süleyman Serdar
dc.contributor.kuauthorYılmaz, Yasin
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileMaster Student
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid177972
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:01:21Z
dc.date.issued2010
dc.description.abstractWe consider sequential nonlinear prediction of a bounded, real-valued and deterministic signal from its noise-corrupted past samples in a competitive algorithm framework. We introduce a randomized algorithm based on context-trees [1]. The introduced algorithm asymptotically achieves the performance of the best piecewise affine model that can both select the best partition of the past observations space (from a doubly exponential number of possible partitions) and the affine model parameters based on the desired clean signal in hindsight. Although the performance measure including the loss function is defined with respect to the noise-free clean signal, the clean signal, its past samples or prediction errors are not available for training or constructing predictions. We demonstrate the performance of the introduced algorithm when its applied to certain chaotic signals.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/SIU.2010.5651533
dc.identifier.isbn9781-4244-9671-6
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-78651459468anddoi=10.1109%2fSIU.2010.5651533andpartnerID=40andmd5=c90bb7b79364d97617041d05bd3f5b39
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-78651459468
dc.identifier.urihttp://dx.doi.org/10.1109/SIU.2010.5651533
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8219
dc.keywordsAffine model
dc.keywordsChaotic signal
dc.keywordsCompetitive algorithms
dc.keywordsDeterministic signals
dc.keywordsExponential numbers
dc.keywordsLoss functions
dc.keywordsNonlinear prediction
dc.keywordsPerformance measure
dc.keywordsPiecewise affine models
dc.keywordsPrediction errors
dc.keywordsRandomized Algorithms
dc.keywordsAlgorithms
dc.keywordsForecasting
dc.keywordsSignal processing
dc.keywordsTrees (mathematics)
dc.languageTurkish
dc.publisherIEEE
dc.sourceSIU 2010 - IEEE 18th Signal Processing and Communications Applications Conference
dc.subjectEngineering
dc.subjectElectrical and electronics engineering
dc.titleCompetitive nonlinear prediction under additive noise
dc.title.alternativeToplanır gürültü altında yarışmacı doǧrusal olmayan öngörü
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-6488-3848
local.contributor.authoridN/A
local.contributor.kuauthorKozat, Süleyman Serdar
local.contributor.kuauthorYılmaz, Yasin
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files