Publication:
Competitive nonlinear prediction under additive noise

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorKozat, Süleyman Serdar
dc.contributor.kuauthorYılmaz, Yasin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T23:01:21Z
dc.date.issued2010
dc.description.abstractWe consider sequential nonlinear prediction of a bounded, real-valued and deterministic signal from its noise-corrupted past samples in a competitive algorithm framework. We introduce a randomized algorithm based on context-trees [1]. The introduced algorithm asymptotically achieves the performance of the best piecewise affine model that can both select the best partition of the past observations space (from a doubly exponential number of possible partitions) and the affine model parameters based on the desired clean signal in hindsight. Although the performance measure including the loss function is defined with respect to the noise-free clean signal, the clean signal, its past samples or prediction errors are not available for training or constructing predictions. We demonstrate the performance of the introduced algorithm when its applied to certain chaotic signals.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/SIU.2010.5651533
dc.identifier.isbn9781-4244-9671-6
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-78651459468
dc.identifier.urihttps://doi.org/10.1109/SIU.2010.5651533
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8219
dc.keywordsAffine model
dc.keywordsChaotic signal
dc.keywordsCompetitive algorithms
dc.keywordsDeterministic signals
dc.keywordsExponential numbers
dc.keywordsLoss functions
dc.keywordsNonlinear prediction
dc.keywordsPerformance measure
dc.keywordsPiecewise affine models
dc.keywordsPrediction errors
dc.keywordsRandomized Algorithms
dc.keywordsAlgorithms
dc.keywordsForecasting
dc.keywordsSignal processing
dc.keywordsTrees (mathematics)
dc.language.isotur
dc.publisherIEEE
dc.relation.ispartofSIU 2010 - IEEE 18th Signal Processing and Communications Applications Conference
dc.subjectEngineering
dc.subjectElectrical and electronics engineering
dc.titleCompetitive nonlinear prediction under additive noise
dc.title.alternativeToplanır gürültü altında yarışmacı doǧrusal olmayan öngörü
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorKozat, Süleyman Serdar
local.contributor.kuauthorYılmaz, Yasin
local.publication.orgunit1College of Engineering
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files