Publication:
Global behavior of solutions to an inverse problem for semilinear hyperbolic equations

dc.contributor.coauthorEden, A.
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorKalantarov, Varga
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:58:16Z
dc.date.issued2006
dc.description.abstractThis paper is concerned with global in time behavior of solutions for a semilinear, hyperbolic, inverse source problem. We prove two types of results. The first one is a global nonexistence result for smooth solutions when the data is chosen appropriately. The second type of results is the asymptotic stability of solutions when the integral constraint vanishes as t goes to infinity. Bibliography: 22 titles. © 2006 Springer Science+Business Media, Inc.
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume136
dc.identifier.doi10.1007/s10958-006-0195-6
dc.identifier.issn1072-3374
dc.identifier.quartileQ4
dc.identifier.scopus2-s2.0-33744804328
dc.identifier.urihttps://doi.org/10.1007/s10958-006-0195-6
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15440
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.ispartofJournal of Mathematical Sciences
dc.subjectMathematics
dc.titleGlobal behavior of solutions to an inverse problem for semilinear hyperbolic equations
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorKalantarov, Varga
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files