Publication: Effect of the micro-textured piston on the performance of a hermetic reciprocating compressor
Program
KU-Authors
KU Authors
Co-Authors
Haque, Umar Ul
Advisor
Publication Date
2023
Language
en
Type
Journal article
Journal Title
Journal ISSN
Volume Title
Abstract
A hermetic reciprocating compressor is one of the most critical parts for the energy efficiency of a household refrigerator. Piston-cylinder contact in the hermetic compressor accounts for most of the energy loss. The tribological performance of the piston-cylinder pair can be enhanced by introducing micro-texturing on the piston surface. In this research, an experimental study is presented to tribologically assess the effect of the micro-textured piston on the performance of the hermetically sealed reciprocating compressor. The micro-texture on the piston surface was prepared by the laser surface texturing method. Four different micro-textures were studied: radial micro-grooves, axial micro-grooves, mesh micro-grooves, and micro-dimples. The textures’ size, shape, and depth were studied using scanning electron microscopy (SEM) and white light interferometry (WLI) techniques. The results were compared with the non-textured piston compressor. It was found that the radial, axial, and mesh micro-grooves pistons have a negative effect on the coefficient of performance of the hermetic reciprocating compressor. However, the piston with the micro-dimples texture increased the compressor's coefficient of performance by 1%. Refrigerant leakage from the piston-cylinder clearance was also investigated and it was observed that micro-dimples on the piston surface decrease the refrigerant leakage by 35% due to the presence of a continuous oil film between piston and cylinder. The compressor's cooling capacity (Qc) was observed to be increased by 1 W in the case of a micro-dimpled piston.
Description
Source:
Proceedings of The Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
Publisher:
Sage Publications Ltd
Keywords:
Subject
Tribology, Wear of materials, Surface texture