Publication:
Can learned frame prediction compete with block motion compensation for video coding?

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuauthorSülün, Serkan
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid26207
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T11:43:22Z
dc.date.issued2021
dc.description.abstractGiven recent advances in learned video prediction, we investigate whether a simple video codec using a pretrained deep model for next frame prediction based on previously encoded/decoded frames without sending any motion side information can compete with standard video codecs based on block motion compensation. Frame differences given learned frame predictions are encoded by a standard still-image (intra) codec. Experimental results show that the rate distortion performance of the simple codec with symmetric complexity is on average better than that of x264 codec on 10 MPEG test videos, but does not yet reach the level of x265 codec. This result demonstrates the power of learned frame prediction (LFP), since unlike motion compensation, LFP does not use information from the current picture. The implications of training with ?1, ?2 or combined ?2 and adversarial loss on prediction performance and compression efficiency are analyzed.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipTurkish Academy of Sciences (TÜBA)
dc.description.versionAuthor's final manuscript
dc.description.volume15
dc.formatpdf
dc.identifier.doi10.1007/s11760-020-01751-y
dc.identifier.eissn1863-1711
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03311
dc.identifier.issn1863-1703
dc.identifier.linkhttps://doi.org/10.1007/s11760-020-01751-y
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85089572606
dc.identifier.urihttps://hdl.handle.net/20.500.14288/326
dc.identifier.wos561857200001
dc.keywordsDeep learning
dc.keywordsFrame prediction
dc.keywordsHEVC-Intra codec
dc.keywordsPredictive frame difference
dc.keywordsRate-distortion performance
dc.languageEnglish
dc.publisherSpringer Nature
dc.relation.grantno2.17E+35
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10096
dc.sourceSignal, Image and Video Processing
dc.subjectEngineering
dc.subjectImaging science and photographic technology
dc.titleCan learned frame prediction compete with block motion compensation for video coding?
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-1465-8121
local.contributor.authoridN/A
local.contributor.kuauthorTekalp, Ahmet Murat
local.contributor.kuauthorSülün, Serkan
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10096.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format