Publication:
State-dependent stock selection in index tracking: a machine learning approach

dc.contributor.coauthorBradrania, R.
dc.contributor.coauthorShafizadeh, M.
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorPirayesh Negab, Davood
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T23:00:45Z
dc.date.issued2022
dc.description.abstractWe focus on the stock selection step of the index tracking problem in passive investment management and incorporate constant changes in the dynamics of markets into the decision. We propose an approach, using machine learning techniques, which analyses the performance of the selection methods used in previous market states and identifies the one that gives the optimal tracking portfolio in each period. We apply the proposed procedure using the popular cointegration technique in index tracking and show that it tracks the S&P 500 with a very high level of accuracy. The empirical evidence shows that our proposed approach outperforms cointegration techniques that use a single criterion (e.g., stocks with the maximum market capitalization) in the asset selection.
dc.description.indexedbyScopus
dc.description.indexedbyWOS
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume36
dc.identifier.doi10.1007/s11408-021-00391-7
dc.identifier.issn1934-4554
dc.identifier.scopus2-s2.0-85104939825
dc.identifier.urihttps://doi.org/10.1007/s11408-021-00391-7
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8118
dc.identifier.wos1027855400001
dc.keywordsCointegration
dc.keywordsDeep neural network
dc.keywordsIndex tracking
dc.keywordsMachine learning
dc.keywordsStock selection
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofFinancial Markets and Portfolio Management
dc.subjectBusiness
dc.subjectFinance
dc.subjectIndustrial engineering
dc.titleState-dependent stock selection in index tracking: a machine learning approach
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorPirayesh Negab, Davood
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery434c9663-2b11-4e66-9399-c863e2ebae43

Files