Publication:
Existence of an attractor and determining modes for structurally damped nonlinear wave equations

dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorBilgin, Bilgesu Arif
dc.contributor.kuauthorKalantarov, Varga
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokidN/A
dc.contributor.yokid117655
dc.date.accessioned2024-11-10T00:02:12Z
dc.date.issued2018
dc.description.abstractThe paper is devoted to the study of asymptotic behavior as t -> +infinity of solutions of initial boundary value problem for structurally damped semi-linear wave equation partial derivative(2)(t)u(x, t) - Delta u(x, t)+gamma(-Delta)(theta)partial derivative(t) u(x,t) + f(u) = g(x), theta is an element of(0, 1), x is an element of Omega, t > 0 under homogeneous Dirichlet's boundary condition in a bounded domain Omega subset of R-3. We proved that the asymptotic behavior as t -> infinity of solutions of this problem is completely determined by dynamics of the first N Fourier modes, when N is large enough. We also proved that the semigroup generated by this problem when theta is an element of(1/2, 1) possesses an exponential attractor. (C) 2017 Elsevier B.V. All rights reserved.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume376
dc.identifier.doi10.1016/j.physd.2017.12.001
dc.identifier.eissn1872-8022
dc.identifier.issn0167-2789
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85039740519
dc.identifier.urihttp://dx.doi.org/10.1016/j.physd.2017.12.001
dc.identifier.urihttps://hdl.handle.net/20.500.14288/16096
dc.identifier.wos437962900003
dc.keywordsStrongly damped wave equations
dc.keywordsNonlinear wave equation
dc.keywordsStructurally damped wave equation
dc.keywordsDetermining modes
dc.keywordsGlobal solution
dc.keywordsGlobal attractor
dc.languageEnglish
dc.publisherElsevier Science Bv
dc.sourcePhysica D-Nonlinear Phenomena
dc.subjectMathematics
dc.subjectApplied mathematics
dc.subjectPhysics
dc.subjectFluids
dc.subjectPlasmas
dc.subjectPhysics
dc.subjectMathematical
dc.titleExistence of an attractor and determining modes for structurally damped nonlinear wave equations
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-6282-4027
local.contributor.authorid0000-0003-0928-3513
local.contributor.kuauthorBilgin, Bilgesu Arif
local.contributor.kuauthorKalantarov, Varga
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files