Publication:
Passive vibration control of a plate via piezoelectric shunt damping with FEM and ECM

dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorAghakhani, Amirreza
dc.contributor.kuauthorBaşdoğan, İpek
dc.contributor.kuauthorMotlagh, Peyman Lahe
dc.contributor.kuprofilePhD Student
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid179940
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T12:00:11Z
dc.date.issued2018
dc.description.abstractTwo-dimensional thin plates are widely used in many aerospace, automotive and marine applications. Vibration attenuation can be achieved in these structures by attaching piezoelectric elements on to the structure integrated with shunt damping circuits. This enables a compact vibration damping method without adding significant mass and volumetric occupancy, unlike the bulky mechanical dampers. Practical implementation of shunt damping technique requires accurate modeling of the host structure, the piezoelectric elements and the dynamics of the shunt circuit. Unlike other studies in the literature of piezoelectric shunt damping, this work utilizes a multi-modal equivalent circuit model (ECM) of a thin plate with multiple piezo-patches, to demonstrate the performance of shunt circuits. The equivalent system parameters are obtained from the modal analysis solution based on the Rayleigh-Ritz method. The ECM is coupled to the shunt circuits in SPICE software, where the shunt configuration consists of three branches of electrical resonators, each tuned to one vibration mode of the structure. Using the harmonic analysis in SPICE for a range of excitation frequencies, current output of each ECM branch is calculated for open-circuit and optimum shunt circuit conditions. The current of ECM branches are then converted to the displacement outputs in physical coordinates and validated by the finite-element simulations in ANSYS. It is shown that the vibration attenuation of a vibration mode can be successfully achieved when there is a reduction in the corresponding current amplitude of the ECM branch. This correlation can be utilized in the design of efficient linear/nonlinear shunt circuits.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.formatpdf
dc.identifier.doi10.1117/12.2295703
dc.identifier.eissn1996-756X
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01364
dc.identifier.isbn978-1-5106-1699-8
dc.identifier.issn0277-786X
dc.identifier.linkhttps://doi.org/10.1117/12.2295703
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85049215643
dc.identifier.urihttps://hdl.handle.net/20.500.14288/939
dc.identifier.wos453460100002
dc.keywordsShunt damping
dc.keywordsRayleigh-Ritz
dc.keywordsECM
dc.languageEnglish
dc.publisherSociety of Photo-optical Instrumentation Engineers (SPIE)
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8159
dc.sourceProceedings of SPIE - The International Society for Optical Engineering
dc.subjectOptics
dc.subjectEnergy and fuels
dc.subjectMaterials science
dc.titlePassive vibration control of a plate via piezoelectric shunt damping with FEM and ECM
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0001-9092-5856
local.contributor.authoridN/A
local.contributor.kuauthorAghakhani, Amirreza
local.contributor.kuauthorBaşdoğan, İpek
local.contributor.kuauthorMotlagh, Peyman Lahe
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8159.pdf
Size:
552.54 KB
Format:
Adobe Portable Document Format