Publication:
Inter genre similarity modeling for automatic music genre classification

Placeholder

Organizational Units

Program

KU Authors

Co-Authors

Advisor

Publication Date

2006

Language

Turkish

Type

Conference proceeding

Journal Title

Journal ISSN

Volume Title

Abstract

Two important problems of the automatic music genre classification are feature extraction and classifier design. This paper investigates inter-genre similarity modeling (IGS) to improve the automatic music genre classification performance. Intergenre similarity information is extracted over the mis-classified feature population. Once the inter-genre similarity is modeled, elimination of the inter-genre similarity reduces the inter-genre confusion and improves the identification rates. Inter-genre similarity modeling is further improved with iterative IGS modeling and score modeling for IGS elimination. Experimental results with promising classification improvements are provided. / Öz: Otomatik müzik türü sınıflandırmasının iki önemli sorunu, özellik çıkarımı ve sınıflandırıcı tasarımıdır. Bu makale, otomatik müzik türü sınıflandırma performansını iyileştirmek için türler arası benzerlik modellemesini (IGS) araştırmaktadır. Türler arası benzerlik bilgisi, yanlış sınıflandırılmış özellik popülasyonu üzerinden çıkarılır. Türler arası benzerlik modellendikten sonra, türler arası benzerliğin ortadan kaldırılması, türler arası karışıklığı azaltmakta ve tanımlama oranlarını iyileştirmektedir. Türler arası benzerlik modellemesi, yinelemeli IGS modellemesi ve IGS'nin ortadan kaldırılması için puan modellemesi ile daha da geliştirildi. Umut verici sınıflandırma iyileştirmeleri ile deneysel sonuçlar sağlanmıştır.

Description

Source:

2006 IEEE 14th Signal Processing and Communications Applications Conference

Publisher:

Institute of Electrical and Electronics Engineers (IEEE)

Keywords:

Subject

Computer engineering

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details