Publication:
First principles calculations and synthesis of multi-phase (HfTiWZr)B2 high entropy diboride ceramics: microstructural, mechanical and thermal characterization

dc.contributor.coauthorKavak, S.
dc.contributor.coauthorBayrak, K. G.
dc.contributor.coauthorMansoor, M.
dc.contributor.coauthorKaba, M.
dc.contributor.coauthorAyas, E.
dc.contributor.coauthorDerin, B.
dc.contributor.coauthorÖveçoğlu, M.L.
dc.contributor.coauthorAğaoğulları, D.
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorBalcı, Özge
dc.contributor.kuprofileResearcher
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid295531
dc.date.accessioned2024-11-09T23:13:30Z
dc.date.issued2023
dc.description.abstractFirst principles calculations were conducted on (HfTiWZr)B2 high entropy diboride (HEB) composition, which indicated a low formation energy and promising mechanical properties. The (HfTiWZr)B2 HEBs were synthesized from the constituent borides and elemental boron powders via high energy ball milling and spark plasma sintering. X-ray diffraction analyses revealed two main phases for the sintered samples: AlB2 structured HEB phase and W-rich secondary phase. To investigate the performance of multi-phase microstructures containing a significant percentage of the HEB phase was focused in this study. The highest microhardness, nanohardness, and lowest wear volume loss were obtained for the 10 h milled and 2050 °C sintered sample as 24.34 ± 1.99 GPa, 32.8 ± 1.9 GPa and 1.41 ± 0.07 × 10−4 mm3, respectively. Thermal conductivity measurements revealed that these multi-phase HEBs have low values varied between 15 and 23 W/mK. Thermal gravimetry measurements showed their mass gains below 2% at 1200 °C. © 2022 Elsevier Ltd
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.issue3
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume43
dc.identifier.doi10.1016/j.jeurceramsoc.2022.10.047
dc.identifier.issn0955-2219
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85140644319&doi=10.1016%2fj.jeurceramsoc.2022.10.047&partnerID=40&md5=8de50dea900f3107def861ffe55f6494
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85140644319
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9982
dc.identifier.wos891259300001
dc.keywordsFirst principles calculations
dc.keywordsHigh entropy borides
dc.keywordsMechanical properties
dc.keywordsMicrostructure
dc.keywordsThermal properties
dc.languageEnglish
dc.publisherElsevier B.V.
dc.sourceJournal of the European Ceramic Society
dc.subjectMaterials science
dc.subjectCeramics
dc.titleFirst principles calculations and synthesis of multi-phase (HfTiWZr)B2 high entropy diboride ceramics: microstructural, mechanical and thermal characterization
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-6756-3180
local.contributor.kuauthorBalcı, Özge
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files