Publication:
Modal analysis of finite-size piezoelectric metamaterial plates

dc.contributor.coauthorAghakhani, Amirreza
dc.contributor.coauthorGözüm, Mehmet Murat
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorBaşdoğan, İpek
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid179940
dc.date.accessioned2024-11-09T13:07:02Z
dc.date.issued2020
dc.description.abstractTwo-dimensional electromechanical metamaterials composed of thin plates with local piezoelectric resonators can display extreme vibration attenuation characteristics at desired frequencies. The typical bandgap analyses in the literature use the assumption of wave propagation in an infinite elastic structure and do not consider the modal characteristics of the structure. However, for practical implementation and design of finite-size electromechanical metamaterials, modal behaviour of the host structure and piezoelectric elements must be coupled with the dynamics of shunt circuits. To this end, we present a system-level modal analysis framework for finite-size thin plates with a segregated array of piezo-patches connected to resonant shunt circuits. The developed model takes into account the spatially discontinuous flexural rigidity of the metamaterial plate due to discrete placement of piezoelectric resonators on the substrate. Using the developed framework, we show that the electrical quality factor of resonators is critical for transitioning from broadband shunt damping to bandgap formation in piezoelectric plate metamaterials. This enables on-demand tailoring of effective dynamic stiffness of metamaterial plates for the targeted task. Lastly, for a fixed number of discrete resonators, we demonstrate the effect of physical gap size between resonators on the bandgap creation. Overall, the modelling frameworks in this study can be used for predicting the dynamics of piezoelectric plate-type metamaterials for applications in waveguiding, attenuation, filtering, and energy harvesting.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue50
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.description.volume53
dc.formatpdf
dc.identifier.doi10.1088/1361-6463/abb5d5
dc.identifier.eissn1361-6463
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02490
dc.identifier.issn0022-3727
dc.identifier.linkhttps://doi.org/10.1088/1361-6463/abb5d5
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85095823496
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2541
dc.identifier.wos577014600001
dc.keywordsMetamaterial
dc.keywordsPiezoelectricity
dc.keywordsPlate
dc.keywordsModal anlaysis
dc.keywordsBandgap
dc.languageEnglish
dc.publisherInstitute of Physics (IOP) Publishing
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9128
dc.sourceJournal of Physics D: Applied Physics
dc.subjectPhysics, applied
dc.titleModal analysis of finite-size piezoelectric metamaterial plates
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-9092-5856
local.contributor.kuauthorBaşdoğan, İpek
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9128.pdf
Size:
6.7 MB
Format:
Adobe Portable Document Format