Publication:
Nonparametric tests for optimal predictive ability

dc.contributor.coauthorArvanitis, Stelios
dc.contributor.coauthorPost, Thierry
dc.contributor.coauthorPoti, Valerio
dc.contributor.departmentDepartment of Business Administration
dc.contributor.kuauthorKarabatı, Selçuk
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Business Administration
dc.contributor.schoolcollegeinstituteCollege of Administrative Sciences and Economics
dc.contributor.yokid38819
dc.date.accessioned2024-11-09T23:36:54Z
dc.date.issued2021
dc.description.abstractA nonparametric method for comparing multiple forecast models is developed and implemented. The hypothesis of Optimal Predictive Ability generalizes the Superior Predictive Ability hypothesis from a single given loss function to an entire class of loss functions. Distinction is drawn between General Loss functions, Convex Loss functions, and Symmetric Convex Loss functions. The research hypothesis is formulated in terms of moment inequality conditions. The empirical moment conditions are reduced to an exact and finite system of linear inequalities based on piecewise-linear loss functions. The hypothesis can be tested in a statistically consistent way using a blockwise Empirical Likelihood Ratio test statistic. A computationally feasible test procedure computes the test statistic using Convex Optimization methods, and estimates conservative, data-dependent critical values using a majorizing chi-square limit distribution and a moment selection method. An empirical application to inflation forecasting reveals that a very large majority of thousands of forecast models are redundant, leaving predominantly Phillips Curve-type models, when convexity and symmetry are assumed.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipNazarbayev University [GSB2018003] Post acknowledges financial support by Nazarbayev University in the form of Faculty Development Grant GSB2018003.
dc.description.volume37
dc.identifier.doi10.1016/j.ijforecast.2020.10.002
dc.identifier.eissn1872-8200
dc.identifier.issn0169-2070
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85096848754
dc.identifier.urihttp://dx.doi.org/10.1016/j.ijforecast.2020.10.002
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12737
dc.identifier.wos621832300027
dc.keywordsForecast comparison
dc.keywordsStochastic dominance
dc.keywordsEmpirical likelihood
dc.keywordsInflation forecasting
dc.keywordsMoment selection
dc.keywordsStochastic-dominance
dc.keywordsEmpirical likelihood
dc.keywordsAsymptotic inference
dc.keywordsConfıdence-intervals
dc.keywordsMoment inequalıtıes
dc.keywordsOptimization
dc.languageEnglish
dc.publisherElsevier
dc.sourceInternational Journal of Forecasting
dc.subjectEconomics
dc.subjectManagement
dc.titleNonparametric tests for optimal predictive ability
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-6976-5405
local.contributor.kuauthorKarabatı, Selçuk
relation.isOrgUnitOfPublicationca286af4-45fd-463c-a264-5b47d5caf520
relation.isOrgUnitOfPublication.latestForDiscoveryca286af4-45fd-463c-a264-5b47d5caf520

Files