Publication:
3D locomotion of surface-rolling microrobots: a trade-off between hydrodynamic wall and gravitational effects

dc.contributor.coauthorPark, Myungjin
dc.contributor.coauthorBozuyuk, Ugur
dc.contributor.coauthorYildiz, Erdost
dc.contributor.coauthorMin, Hyeongho
dc.contributor.coauthorYoon, Jungwon
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-09-10T04:57:51Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractSynthetic microrobots have gained significant attention due to their potential in various applications in biomedicine and lab-on-a-chip technologies. As a fundamental requirement, microrobots must navigate in 3D, effectively counteracting gravity to execute their tasks. However, locomotion at small scales presents numerous counterintuitive behaviors, primarily governed by the interactions between the microrobot's body and its surrounding boundaries. In this study, the locomotion of surface-rolling microrobots is investigated in 3D, particularly focusing on their ability to climb walls. Through a combination of experiments and computational fluid dynamics analyzes, it is demonstrated that the influence of gravity plays a secondary role in enabling surface-rolling microrobots to climb walls. Instead, locomotion capability in 3D settings is primarily determined by interactions with surrounding boundaries. The fundamental principles of surface-rolling locomotion in 3D spaces is elucidated and a design strategy aimed at optimizing fluid flow for efficient propulsion in future applications is proposed.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipMax Planck Society; National Research Foundation of Korea (NRF); Government of Korea (MSIT) [RS-2025-00554248]; GIST-IREF research fellowship
dc.description.versionPublished Version
dc.identifier.doi10.1002/aisy.202500381
dc.identifier.eissn2640-4567
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06469
dc.identifier.issue11
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105006849165
dc.identifier.urihttps://doi.org/10.1002/aisy.202500381
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30293
dc.identifier.volume7
dc.identifier.wos001498572500001
dc.keywordsHydrodynamic wall effects
dc.keywordsMicrorobot swarming
dc.keywordsMicrotopographic surfaces
dc.keywordsSurface microrollers
dc.keywordsThree-dimensional locomotions
dc.language.isoeng
dc.publisherWiley
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofAdvanced Intelligent Systems
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectAutomation and control systems
dc.subjectComputer science, artificial intelligence
dc.subjectRobotics
dc.title3D locomotion of surface-rolling microrobots: a trade-off between hydrodynamic wall and gravitational effects
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameSitti
person.givenNameMetin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06469.pdf
Size:
10.49 MB
Format:
Adobe Portable Document Format