Publication:
Experimental demonstration of ultra-wideband tapers, splitters and crossings with sub-0.1dB loss through computationally efficient and data-driven eigenmode expansion

dc.conference.dateJUNE 23-27, 2025
dc.conference.locationMunich
dc.contributor.coauthorOktay, Mehmet Can
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorDanış, Bahrem Serhat
dc.contributor.kuauthorRzayev, Ujal
dc.contributor.kuauthorMağden, Emir Salih
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-12-31T08:21:12Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractThe growing demand for custom photonic components with stringent performance metrics necessitates efficient design approaches [1-2]. We experimentally demonstrate three ultra-broadband, silicon-based photonic devices-waveguide tapers, splitters, and crossings-designed using a data-driven eigenmode expansion (EME) method [3]. For each device category, we first model light propagation in a given geometry using cascaded eigenmode scattering matrices. With this representation, our electromagnetic computations benefit from parallel data processing in GPUs, reducing individual simulation times to tens of milliseconds, while maintaining 3D-FDTD level of accuracy. We then utilize nonlinear optimization algorithms [4], and iteratively optimize the device geometry for near-lossless operation. Our first device is a 30µm-long waveguide taper with input and output widths of 0.5µm and 9.0µm, respectively (Fig 1a). The insertion loss through this device is measured to be 0.050dB at 1550 nm, by using the cutback method through up to 250 copies of this taper. The 2µm-long, 1×2 power splitter (Fig 1b) similarly demonstrates low-loss operation with an insertion loss of 0.083dB, measured using a similar cutback approach. Finally, the waveguide crossing (Fig 1c), designed within a 12×12 µm2 footprint, also achieves a low insertion loss of 0.051dB. All devices maintain insertion losses below 0.1dB across the 1500-1580 nm range, with over 250nm of 1dB-bandwidths as confirmed by 3D-FDTD simulations. Our data-driven eigenmode simulator also allows for the input/output waveguide widths and the device length to be user-specified as design hyperparameters, offering flexibility for a variety of on-chip applications. Moreover, the total computational design time for the taper, splitter, and crossing are 18s, 14s, and 5s, respectively, offering simulation speeds more than 100,000 times faster than conventional EME methods, and highlighting the extreme efficiency of the data-driven eigenmode expansion method. These demonstrations can unlock new opportunities for scalable, application-based photonic systems in areas like communication, sensing, and computing.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/CLEO/EUROPE-EQEC65582.2025.11111376
dc.identifier.embargoNo
dc.identifier.isbn9798331512521
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105016192743
dc.identifier.urihttps://doi.org/10.1109/CLEO/EUROPE-EQEC65582.2025.11111376
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31571
dc.keywordsBandwidth
dc.keywordsComputational electromagnetics
dc.keywordsExpansion
dc.keywordsFiber optic networks
dc.keywordsGeometry
dc.keywordsIntegrated circuit design
dc.keywordsIterative methods
dc.keywordsOptical instruments
dc.keywordsOptical waveguides
dc.keywordsPhotonic devices
dc.keywordsPhotonics
dc.keywordsUltra-wideband (uwb)
dc.keywords3d Fdtd
dc.keywordsComputationally efficient
dc.keywordsData driven
dc.keywordsEigen modes
dc.keywordsEigen-mode expansion
dc.keywordsExpansion methods
dc.keywordsExperimental demonstrations
dc.keywordsUltrawide band
dc.keywordsWaveguide crossings
dc.keywordsWaveguide tapers
dc.keywordsInsertion losses
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartof2025 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectEngineering
dc.titleExperimental demonstration of ultra-wideband tapers, splitters and crossings with sub-0.1dB loss through computationally efficient and data-driven eigenmode expansion
dc.typeConference Proceeding
dspace.entity.typePublication
person.familyNameDanış
person.familyNameRzayev
person.familyNameMağden
person.givenNameBahrem Serhat
person.givenNameUjal
person.givenNameEmir Salih
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery434c9663-2b11-4e66-9399-c863e2ebae43

Files