Publication:
A likelihood ratio-based approach to segmenting unknown objects

dc.contributor.coauthorShoeb, Youssef
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentKUIS AI (Koç University & İş Bank Artificial Intelligence Center)
dc.contributor.kuauthorFaculty Member, Nayal, Nazir
dc.contributor.kuauthorFaculty Member, Güney, Fatma
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-09-10T04:56:53Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractAddressing the Out-of-Distribution (OoD) segmentation task is a prerequisite for perception systems operating in an open-world environment. Large foundational models are frequently used in downstream tasks, however, their potential for OoD remains mostly unexplored. We seek to leverage a large foundational model to achieve robust representation. Outlier supervision is a widely used strategy for improving OoD detection of the existing segmentation networks. However, current approaches for outlier supervision involve retraining parts of the original network, which is typically disruptive to the model's learned feature representation. Furthermore, retraining becomes infeasible in the case of large foundational models. Our goal is to retrain for outlier segmentation without compromising the strong representation space of the foundational model. To this end, we propose an adaptive, lightweight unknown estimation module (UEM) for outlier supervision that significantly enhances the OoD segmentation performance without affecting the learned feature representation of the original network. UEM learns a distribution for outliers and a generic distribution for known classes. Using the learned distributions, we propose a likelihood-ratio-based outlier scoring function that fuses the confidence of UEM with that of the pixel-wise segmentation inlier network to detect unknown objects. We also propose an objective to optimize this score directly. Our approach achieves a new state-of-the-art across multiple datasets, outperforming the previous best method by 5.74% average precision points while having a lower false-positive rate. Importantly, strong inlier performance remains unaffected. The code and pre-trained models are available at: https://github.com/NazirNayal8/UEM-likelihood-ratio.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Research Council [2202237]; KUIS AI, Royal Society Newton Fund Advanced Fellowship [101116486]; European Union (ERC); German Federal Ministry for Economic Affairs and Climate Action within the project just better DATA
dc.description.versionPublished Version
dc.identifier.doi10.1007/s11263-025-02509-0
dc.identifier.eissn1573-1405
dc.identifier.embargoNo
dc.identifier.endpage6872
dc.identifier.filenameinventorynoIR06407
dc.identifier.issn0920-5691
dc.identifier.issue10
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105009537304
dc.identifier.startpage6860
dc.identifier.urihttps://doi.org/10.1007/s11263-025-02509-0
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30202
dc.identifier.volume133
dc.identifier.wos001521529700001
dc.keywordsAnomaly segmentation
dc.keywordsOut-of-distribution detection
dc.keywordsLikelihood ratio
dc.keywordsUnknown segmentation
dc.keywordsOoD segmentation
dc.keywordsFoundational models for OoD
dc.language.isoeng
dc.publisherSpringer
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofInternational journal of computer vision
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.titleA likelihood ratio-based approach to segmenting unknown objects
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06407.pdf
Size:
10.21 MB
Format:
Adobe Portable Document Format