Publication:
Density-based 3D shape descriptors

dc.contributor.coauthorAkgül, Ceyhun Burak
dc.contributor.coauthorSankur, Bülent
dc.contributor.coauthorSchmitt, Francis
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYemez, Yücel
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T12:19:32Z
dc.date.issued2007
dc.description.abstractWe propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf) of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipBU Project
dc.description.sponsorshipScientific and Technical Research Council of Turkey (Scientific and Technological Research Council of Turkey (TÜBİTAK))
dc.description.versionPublisher version
dc.formatpdf
dc.identifier.doi10.1155/2007/32503
dc.identifier.eissn1687-6181
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00904
dc.identifier.issn1687-6174
dc.identifier.linkhttps://doi.org/10.1155/2007/32503
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-33846222017
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1496
dc.identifier.wos247955900001
dc.keywordsSimilarity search
dc.keywordsRepresentation
dc.keywordsDatabases
dc.languageEnglish
dc.publisherSpringer
dc.relation.grantno03A203
dc.relation.grantno103E038
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/906
dc.sourceEurasip Journal on Advances in Signal Processing
dc.subjectElectrical and electronic engineering
dc.titleDensity-based 3D shape descriptors
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorYemez, Yücel
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
906.pdf
Size:
330.56 KB
Format:
Adobe Portable Document Format