Publication:
Multiscale fabrication and characterization of a NEMS force sensor

dc.contributor.coauthorPruchnik, Bartosz
dc.contributor.coauthorKwoka, Krzysztof
dc.contributor.coauthorBadura, Dominik
dc.contributor.coauthorPiasecki, Tomasz
dc.contributor.coauthorAydogan, Cemal
dc.contributor.coauthorRangelow, Ivo W.
dc.contributor.coauthorYalcinkaya, Arda Deniz
dc.contributor.coauthorGotszalk, Teodor
dc.contributor.coauthorBayraktar, Halil
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorJedari Ghourichaei, Masoud
dc.contributor.kuauthorKarimzadehkhouei, Mehrdad
dc.contributor.kuauthorDemirkazık, Levent
dc.contributor.kuauthorToymus, Alp Timuçin
dc.contributor.kuauthorAydın, Onur
dc.contributor.kuauthorAksoy, Bekir
dc.contributor.kuauthorNadar, Gökhan
dc.contributor.kuauthorBeker, Levent
dc.contributor.kuauthorAlaca, Burhanettin Erdem
dc.contributor.researchcentern2STAR-Koç University Nanofabrication and Nanocharacterization Center for Scientifc and Technological Advanced Research
dc.contributor.researchcenterKoç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM)
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:36:08Z
dc.date.issued2024
dc.description.abstractThis study investigates the fabrication and characterization of an innovative nanoelectromechanical system force sensor that utilizes suspended submicron silicon nanowires for detecting multi-axis forces in the micro-newton range. The sensor combines microscale shuttle platforms with nanowire piezoresistors along with retaining springs. Its fabrication involves a rather involved set of Si deep etching, doping, metallization, release, and encapsulation processes on silicon-on-insulator wafers. Electromechanical characterization demonstrates sensor reliability under mechanical strains up to the level of 10% as well as gauge factor measurements. Dynamic response analysis confirms a high resonant frequency of 12.34 MHz with a quality factor of 700 in air, closely matching simulation results. Thermal characterization of the sensor reveals a Temperature Coefficient of Resistance of 6.4 × 10⁻⁴ °C⁻¹. Sensor characterization under jet flow reveals its ability to detect strong flows demonstrating a resistance change of as much as 2.02% under sustained gas flow through a nozzle. Sensor integration into the gas flow measurement setup demonstrates its versatility in detecting small forces, paving the way for further exploration of thermomechanical factors. Combined with its miniature footprint, the sensor's electromechanical performance hints at applications in the analysis of velocity gradients in microscale flows including micro/nano diffusers and nozzles in small satellite propulsion.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessAll Open Access
dc.description.openaccessHybrid Gold Open Access
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsM.J.G. and U.K. contributed equally to this work. Authors acknowledge financial support by the Scientific and Technological Research Council of T\u00FCrkiye (T\u00DCB\u0130TAK under Grants No. (120N361 and 118C155) and by the Polish National Centre for Research and Development under Grant No. (01PT/0002/21) \u201CpiezoIoTMEMS\u201D. The authors also acknowledge the use of the services and facilities of n2STAR\u2010Ko\u00E7 University Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research.
dc.identifier.doi10.1002/admt.202400022
dc.identifier.issn2365-709X
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85202952029
dc.identifier.urihttps://doi.org/10.1002/admt.202400022
dc.identifier.urihttps://hdl.handle.net/20.500.14288/21959
dc.identifier.wos1303096300001
dc.keywordsDynamic response
dc.keywordsFlow sensing
dc.keywordsForce sensor
dc.keywordsGauge factor
dc.keywordsMicrofabrication
dc.keywordsSilicon nanowire
dc.languageen
dc.publisherJohn Wiley and Sons Inc
dc.sourceAdvanced Materials Technologies
dc.subjectTactile sensor
dc.subjectNeural network
dc.subjectRobot
dc.titleMultiscale fabrication and characterization of a NEMS force sensor
dc.typeJournal article
dc.type.otherEarly access
dspace.entity.typePublication
local.contributor.kuauthorJedari Ghourichaei, Masoud
local.contributor.kuauthorKarimzadehkhouei, Mehrdad
local.contributor.kuauthorDemirkazık, Levent
local.contributor.kuauthorToymus, Alp Timuçin
local.contributor.kuauthorAydın, Onur
local.contributor.kuauthorAksoy, Bekir
local.contributor.kuauthorNadar, Gökhan
local.contributor.kuauthorBeker, Levent
local.contributor.kuauthorAlaca, Burhanettin Erdem
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04674.pdf
Size:
3.32 MB
Format:
Adobe Portable Document Format