Publication: An extension property for banach spaces
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Freedman, Walden | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.date.accessioned | 2024-11-09T23:25:31Z | |
dc.date.issued | 2002 | |
dc.description.abstract | A Banach space X has property (E) if every operator from X into c0 extends to an operator from X** into c0; X has property (L) if whenever K ⊆ X is limited in X**, then K is limited in X; X has property (G) if whenever K ⊆ X is Grothendieck in X**, then K is Grothendieck in X. In all of these, we consider X as canonically embedded in X**. We study these properties in connection with other geometric properties, such as the Phillips properties, the Gelfand-Phillips and weak Gelfand-Phillips properties, and the property of being a Grothendieck space. © 2002, Instytut Matematyczny. All rights reserved. | |
dc.description.indexedby | Scopus | |
dc.description.issue | 2 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.volume | 91 | |
dc.identifier.doi | 10.4064/cm91-2-2 | |
dc.identifier.issn | 0010-1354 | |
dc.identifier.quartile | Q3 | |
dc.identifier.scopus | 2-s2.0-77953697627 | |
dc.identifier.uri | https://doi.org/10.4064/cm91-2-2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/11369 | |
dc.keywords | Extension property | |
dc.keywords | Grothendieck spaces | |
dc.keywords | Lifting property | |
dc.keywords | Property (V*) | |
dc.keywords | Sobczyk’s theorem | |
dc.keywords | Weak phillips property | |
dc.language.iso | eng | |
dc.publisher | Institute of Mathematics, Polish Academy of Sciences | |
dc.relation.ispartof | Colloquium Mathematicum | |
dc.subject | Mathematics | |
dc.title | An extension property for banach spaces | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Freedman, Walden | |
local.publication.orgunit1 | College of Sciences | |
local.publication.orgunit2 | Department of Mathematics | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isParentOrgUnitOfPublication | af0395b0-7219-4165-a909-7016fa30932d | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | af0395b0-7219-4165-a909-7016fa30932d |