Publication:
Non-Abelian geometric phase for general three-dimensional quantum systems

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorMostafazadeh, Ali
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:36:40Z
dc.date.issued1997
dc.description.abstractAdiabatic U (2) geometric phases are studied for arbitrary quantum systems with a three-dimensional Hilbert space. Necessary and sufficient conditions for the occurrence of the non-Abelian geometrical phases are obtained without actually solving the full eigenvalue problem for the instantaneous Hamiltonian. The parameter space of such systems which has the structure of ℂP2 is explicitly constructed. The results of this article are applicable for arbitrary multipole interaction Hamiltonians H = Qi l ....ln Jil . . . Jinand their linear combinations for spin j = 1 systems. In particular it is shown that the nuclear quadrupole Hamiltonian H = Qij Ji Jj does actually lead to non-Abelian geometric phases for j = 1. This system, being bosonic, is time-reversal invariant. Therefore, it cannot support Abelian adiabatic geometrical phases.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue21
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipKillam Foundation
dc.description.volume30
dc.identifier.doi10.1088/0305-4470/30/21/023
dc.identifier.issn0305-4470
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-0031558715
dc.identifier.urihttps://doi.org/10.1088/0305-4470/30/21/023
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12682
dc.language.isoeng
dc.publisherInstitute of Physics (IOP) Publishing
dc.relation.ispartofJournal of Physics A: Mathematical and General
dc.subjectMathematics
dc.subjectPhysics
dc.titleNon-Abelian geometric phase for general three-dimensional quantum systems
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorMostafazadeh, Ali
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files