Publication:
An algorithmic framework for sparse bounded component analysis

dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorBabataş, Eren
dc.contributor.kuauthorErdoğan, Alper Tunga
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid41624
dc.date.accessioned2024-11-09T23:00:41Z
dc.date.issued2018
dc.description.abstractBounded component analysis (BCA) is a recent approach that enables the separation of both dependent and independent signals from their mixtures. This paper introduces a novel deterministic instantaneous BCA framework for the separation of sparse bounded sources. The framework is based on a geometric maximization setting, where the objective function is defined as the volume ratio of two objects, namely, the principal hyperellipsoid and the bounding l(1)-norm ball, defined over the separator output samples. It is shown that all global maxima of this objective are perfect separators. This paper also provides the corresponding iterative algorithms for both real and complex sparse sources. The numerical experiments illustrate the potential benefits of the proposed approach, with applications on image separation and neuron identification.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue19
dc.description.openaccessNO
dc.description.sponsorshipTUBITAK [112E057] This work was supported in part by TUBITAK 112E057 project.
dc.description.volume66
dc.identifier.doi10.1109/TSP.2018.2866380
dc.identifier.eissn1941-0476
dc.identifier.issn1053-587X
dc.identifier.scopus2-s2.0-85052676450
dc.identifier.urihttp://dx.doi.org/10.1109/TSP.2018.2866380
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8104
dc.identifier.wos444620300001
dc.keywordsSparse source separation
dc.keywordsBounded component analysis (BCA)
dc.keywordsIndependent component analysis (ICA)
dc.keywordsBlind source separation (BSS)
dc.keywordsSparse component analysis (SCA)
dc.keywordsBlind source separation
dc.keywordsDecomposition
dc.keywordsMixtures
dc.languageEnglish
dc.publisherIeee-Inst Electrical Electronics Engineers Inc
dc.sourceIeee Transactions On Signal Processing
dc.subjectEngineering
dc.subjectElectrical electronic engineering
dc.titleAn algorithmic framework for sparse bounded component analysis
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0003-0876-2897
local.contributor.kuauthorBabataş, Eren
local.contributor.kuauthorErdoğan, Alper Tunga
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files