Publication:
Optofluidic FRET microlasers based on surfacesupported liquid microdroplets

dc.contributor.coauthorJonas, A.
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorÖzelci, Ersan
dc.contributor.kuauthorAas, Mehdi
dc.contributor.kuauthorKiraz, Alper
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Physics
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid22542
dc.date.accessioned2024-11-09T23:44:28Z
dc.date.issued2014
dc.description.abstractWe demonstrate optofluidic microlasers using highly efficient non-radiative Forster resonance energy transfer (FRET) for pumping of gain medium placed within liquid microdroplets situated on a superhydrophobic surface. Microdroplets generated from a mixture of ethylene glycol, glycerol, and water and stained with the FRET donor-acceptor dye pair Rhodamine 6G-Rhodamine 700 serve as active optical resonant cavities hosting high-quality whispering gallery modes. Upon direct optical pumping of the donor with a pulsed laser, lasing is observed in the emission band of the acceptor as a result of efficient FRET coupling between the acceptor and donor molecules. FRET lasing is characterized for different acceptor and donor concentrations, and threshold pump fluences of acceptor lasing as low as 6.3 mJ cm(-2) are demonstrated. We also verify the dominance of the non-radiative FRET over cavity-assisted radiative energy transfer for the range of parameters studied in the experiments.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipTUBITAK [111T059] The authors would like to acknowledge financial support from TUBITAK (Grant No. 111T059).
dc.description.volume11
dc.identifier.doi10.1088/1612-2011/11/4/045802
dc.identifier.eissn1612-202X
dc.identifier.issn1612-2011
dc.identifier.scopus2-s2.0-84896506019
dc.identifier.urihttp://dx.doi.org/10.1088/1612-2011/11/4/045802
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13668
dc.identifier.wos332768800013
dc.keywordsMicrocavity laser
dc.keywordsMicrodroplet
dc.keywordsFRET
dc.keywordsSuperhydrophobic surface
dc.keywordsWhispering gallery mode
dc.keywordsLabel-free detection
dc.keywordsSuperhydrophobic surface
dc.keywordsEnergy-transfer
dc.keywordsLasers
dc.keywordsSingle
dc.keywordsMicrocavities
dc.keywordsStationary
dc.keywordsMechanisms
dc.keywordsResonances
dc.keywordsDroplets
dc.languageEnglish
dc.publisherIop Publishing Ltd
dc.sourceLaser Physics Letters
dc.subjectOptics
dc.subjectPhysics
dc.subjectApplied physics
dc.titleOptofluidic FRET microlasers based on surfacesupported liquid microdroplets
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-3812-4514
local.contributor.authorid0000-0003-2048-7269
local.contributor.authorid0000-0001-7977-1286
local.contributor.kuauthorÖzelci, Ersan
local.contributor.kuauthorAas, Mehdi
local.contributor.kuauthorKiraz, Alper
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files