Publication:
Channel prediction using deep recurrent neural network with EVT-Based adaptive quantile loss function

dc.contributor.coauthorMehrnia, Niloofar
dc.contributor.coauthorGross, James
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorPhD Student, Valiahdi, Parmida Sadat
dc.contributor.kuauthorFaculty Member, Ergen, Sinem Çöleri
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-09-10T04:56:28Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractUltra-reliable low latency communication (URLLC) systems are pivotal for applications demanding high reliability and low latency, such as autonomous vehicles. In such contexts, channel prediction becomes essential to maintaining communication quality, as it allows the system to anticipate and mitigate the effects of fast-fading channels, thereby reducing the risk of packet loss and latency spikes. This letter presents a novel framework that integrates neural networks with extreme value theory (EVT) to enhance channel prediction, focusing on predicting extreme channel events that challenge URLLC performance. We propose an EVT-based adaptive quantile loss function that integrates EVT into the loss function of the deep recurrent neural networks (DRNNs) with gated recurrent units (GRUs) to predict extreme channel conditions efficiently. The numerical results indicate that the proposed GRU model, utilizing the EVT-based adaptive quantile loss function, significantly outperforms the traditional GRU. It predicts a tail portion of 7.26%, which closely aligns with the empirical 7.49%, while the traditional GRU model only predicts 2.4%. This demonstrates the superior capability of the proposed model in capturing tail values that are critical for URLLC systems.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey 2247-A National Leaders Research Grant [121C314]
dc.description.versionPublished Version
dc.description.volume29
dc.identifier.doi10.1109/LCOMM.2025.3571930
dc.identifier.eissn1558-2558
dc.identifier.embargoNo
dc.identifier.endpage1703
dc.identifier.filenameinventorynoIR06389
dc.identifier.issn1089-7798
dc.identifier.issue7
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-105005782915
dc.identifier.startpage1699
dc.identifier.urihttps://doi.org/10.1109/LCOMM.2025.3571930
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30162
dc.identifier.wos001527222900044
dc.keywordsUltra reliable low latency communication
dc.keywordsLogic gates
dc.keywordsTelecommunication traffic
dc.keywordsCommunication switching
dc.keywordsChannel estimation
dc.keywordsPredictive models
dc.keywordsAdaptation models
dc.keywordsComputer architecture
dc.keywordsReceivers
dc.keywordsReal-time systems
dc.keywordsChannel prediction
dc.keywordsDeep recurrent neural network
dc.keywordsExtreme value theory
dc.keywordsURLLC
dc.language.isoeng
dc.publisherIeee-Inst Electrical Electronics Engineers Inc
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofIeee Communications Letters
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectTelecommunications
dc.titleChannel prediction using deep recurrent neural network with EVT-Based adaptive quantile loss function
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06389.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format