Publication: Biembeddings of cycle systems using integer Heffter arrays
dc.contributor.coauthor | Cavenagh, Nicholas J. | |
dc.contributor.coauthor | Donovan, Diane M. | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Yazıcı, Emine Şule | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Mathematics | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.contributor.yokid | 27432 | |
dc.date.accessioned | 2024-11-09T13:06:58Z | |
dc.date.issued | 2020 | |
dc.description.abstract | In this paper, we use constructions of Heffter arrays to verify the existence of face 2-colorable embeddings of cycle decompositions of the complete graph. Specifically, forn degrees 1(mod 4)andk degrees 3(mod4),n >> k > 7and whenn degrees 0(mod 3)thenk degrees 7(mod 12), there exist face 2-colorable embeddings of the complete graphK2nk+1onto an orientable surface where each face is a cycle of a fixed lengthk. In these embeddings the vertices ofK2nk+1will be labeled with the elements ofZ2nk+1in such a way that the group,(Z2nk+1,+)acts sharply transitively on the vertices of the embedding. This result is achieved by verifying the existence of nonequivalent Heffter arrays,H(n;k), which satisfy the conditions: (1) for each row and each column the sequential partial sums determined by the natural ordering must be distinct modulo2nk+1; (2) the composition of the natural orderings of the rows and columns is equivalent to a single cycle permutation on the entries in the array. The existence of Heffter arraysH(n;k)that satisfy condition (1) was established earlier in Burrage et al. and in this current paper, we vary this construction and show, fork > 11, that there are at least(n-2)[((k-11)/4)!/e]2such nonequivalentH(n;k)that satisfy both conditions (1) and (2). | |
dc.description.fulltext | YES | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 12 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | TÜBİTAK | |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TÜBİTAK) 2219 | |
dc.description.sponsorship | University of Queensland School of Mathematics and Physics, Ethel Raybould Visiting Fellowship | |
dc.description.version | Author's final manuscript | |
dc.description.volume | 28 | |
dc.format | ||
dc.identifier.doi | 10.1002/jcd.21753 | |
dc.identifier.eissn | 1520-6610 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR02907 | |
dc.identifier.issn | 1063-8539 | |
dc.identifier.link | https://doi.org/10.1002/jcd.21753 | |
dc.identifier.quartile | Q3 | |
dc.identifier.scopus | 2-s2.0-85091529803 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/2530 | |
dc.identifier.wos | 572967800001 | |
dc.keywords | Biembedding cycle systems | |
dc.keywords | Heffter array | |
dc.language | English | |
dc.publisher | Wiley | |
dc.relation.grantno | University of Queensland | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9554 | |
dc.source | Journal of Combinatorial Designs | |
dc.subject | Mathematics | |
dc.title | Biembeddings of cycle systems using integer Heffter arrays | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0001-6824-451X | |
local.contributor.kuauthor | Yazıcı, Emine Şule | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe |
Files
Original bundle
1 - 1 of 1