Publication:
Biembeddings of cycle systems using integer Heffter arrays

dc.contributor.coauthorCavenagh, Nicholas J.
dc.contributor.coauthorDonovan, Diane M.
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorYazıcı, Emine Şule
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid27432
dc.date.accessioned2024-11-09T13:06:58Z
dc.date.issued2020
dc.description.abstractIn this paper, we use constructions of Heffter arrays to verify the existence of face 2-colorable embeddings of cycle decompositions of the complete graph. Specifically, forn degrees 1(mod 4)andk degrees 3(mod4),n >> k > 7and whenn degrees 0(mod 3)thenk degrees 7(mod 12), there exist face 2-colorable embeddings of the complete graphK2nk+1onto an orientable surface where each face is a cycle of a fixed lengthk. In these embeddings the vertices ofK2nk+1will be labeled with the elements ofZ2nk+1in such a way that the group,(Z2nk+1,+)acts sharply transitively on the vertices of the embedding. This result is achieved by verifying the existence of nonequivalent Heffter arrays,H(n;k), which satisfy the conditions: (1) for each row and each column the sequential partial sums determined by the natural ordering must be distinct modulo2nk+1; (2) the composition of the natural orderings of the rows and columns is equivalent to a single cycle permutation on the entries in the array. The existence of Heffter arraysH(n;k)that satisfy condition (1) was established earlier in Burrage et al. and in this current paper, we vary this construction and show, fork > 11, that there are at least(n-2)[((k-11)/4)!/e]2such nonequivalentH(n;k)that satisfy both conditions (1) and (2).
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue12
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK) 2219
dc.description.sponsorshipUniversity of Queensland School of Mathematics and Physics, Ethel Raybould Visiting Fellowship
dc.description.versionAuthor's final manuscript
dc.description.volume28
dc.formatpdf
dc.identifier.doi10.1002/jcd.21753
dc.identifier.eissn1520-6610
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02907
dc.identifier.issn1063-8539
dc.identifier.linkhttps://doi.org/10.1002/jcd.21753
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85091529803
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2530
dc.identifier.wos572967800001
dc.keywordsBiembedding cycle systems
dc.keywordsHeffter array
dc.languageEnglish
dc.publisherWiley
dc.relation.grantnoUniversity of Queensland
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9554
dc.sourceJournal of Combinatorial Designs
dc.subjectMathematics
dc.titleBiembeddings of cycle systems using integer Heffter arrays
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-6824-451X
local.contributor.kuauthorYazıcı, Emine Şule
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9554.pdf
Size:
244.64 KB
Format:
Adobe Portable Document Format