Publication:
Combustion characteristics of ammonia as a renewable energy source and development of reduced chemical mechanisms

Placeholder

School / College / Institute

Organizational Unit

Program

KU Authors

Co-Authors

N/A

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

In the first section of this numerical study we investigate the combustion characteristics of ammonia-air mixtures at elevated pressure and lean conditions which are encountered in gas turbine combustors. Laminar premixed freely propagating flame and homogenous reactor models are used to calculate the combustion properties. The improvement by hydrogen addition to the fuel mixture in combustion characteristics such as laminar flame speed and ignition delay time is noticeable. Based on ammonia decomposition sensitivity analysis, it is found that the OH radicals have a leading role in controlling the fuel mole conversion and the laminar flame speed. The results of sensitivity study of total NOx formation with respect to the equivalence ratio reveal the possibility of localized rich combustion as an effective way to reduce the NOx concentration down to levels that are the same order as the modern gas turbine engines. In the second part of the study, by considering a wide range of conditions in terms of pressure, fuel mixture, and equivalence ratio we develop two reduced mechanisms based on the Konnov mechanism. The reduced mechanisms are capable of predicting total NOx emission level and laminar flame speed in an acceptable accuracy under wide range of conditions. Evaluating performance of the reduced mechanisms with respect to the full mechanism and experimental data shows that the mechanisms are able to predict the combustion properties with almost the same accuracy as the full Konnov mechanism and with nearly five times less CPU time expense.

Source

Publisher

American Institute of Aeronautics and Astronautics Inc, AIAA

Subject

Mechanical engineering

Citation

Has Part

Source

13th International Energy Conversion Engineering Conference

Book Series Title

Edition

DOI

10.2514/6.2015-3917

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details